This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for trlres . Formerly part of proof of eupthres . (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by Mario Carneiro, 3-May-2015) (Revised by AV, 6-Mar-2021) Hypothesis revised using the prefix operation. (Revised by AV, 30-Nov-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | trlres.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| trlres.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | ||
| trlres.d | ⊢ ( 𝜑 → 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) | ||
| trlres.n | ⊢ ( 𝜑 → 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | ||
| trlres.h | ⊢ 𝐻 = ( 𝐹 prefix 𝑁 ) | ||
| Assertion | trlreslem | ⊢ ( 𝜑 → 𝐻 : ( 0 ..^ ( ♯ ‘ 𝐻 ) ) –1-1-onto→ dom ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trlres.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | trlres.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 3 | trlres.d | ⊢ ( 𝜑 → 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) | |
| 4 | trlres.n | ⊢ ( 𝜑 → 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | |
| 5 | trlres.h | ⊢ 𝐻 = ( 𝐹 prefix 𝑁 ) | |
| 6 | 2 | trlf1 | ⊢ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ) |
| 7 | 3 6 | syl | ⊢ ( 𝜑 → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ) |
| 8 | elfzouz2 | ⊢ ( 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( ♯ ‘ 𝐹 ) ∈ ( ℤ≥ ‘ 𝑁 ) ) | |
| 9 | fzoss2 | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ( ℤ≥ ‘ 𝑁 ) → ( 0 ..^ 𝑁 ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | |
| 10 | 4 8 9 | 3syl | ⊢ ( 𝜑 → ( 0 ..^ 𝑁 ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 11 | f1ores | ⊢ ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ∧ ( 0 ..^ 𝑁 ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) : ( 0 ..^ 𝑁 ) –1-1-onto→ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) | |
| 12 | 7 10 11 | syl2anc | ⊢ ( 𝜑 → ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) : ( 0 ..^ 𝑁 ) –1-1-onto→ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) |
| 13 | trliswlk | ⊢ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) | |
| 14 | 2 | wlkf | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝐹 ∈ Word dom 𝐼 ) |
| 15 | 3 13 14 | 3syl | ⊢ ( 𝜑 → 𝐹 ∈ Word dom 𝐼 ) |
| 16 | fzossfz | ⊢ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⊆ ( 0 ... ( ♯ ‘ 𝐹 ) ) | |
| 17 | 16 4 | sselid | ⊢ ( 𝜑 → 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 18 | pfxres | ⊢ ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( 𝐹 prefix 𝑁 ) = ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ) | |
| 19 | 15 17 18 | syl2anc | ⊢ ( 𝜑 → ( 𝐹 prefix 𝑁 ) = ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ) |
| 20 | 5 19 | eqtrid | ⊢ ( 𝜑 → 𝐻 = ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ) |
| 21 | 5 | fveq2i | ⊢ ( ♯ ‘ 𝐻 ) = ( ♯ ‘ ( 𝐹 prefix 𝑁 ) ) |
| 22 | elfzofz | ⊢ ( 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) | |
| 23 | 4 22 | syl | ⊢ ( 𝜑 → 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 24 | pfxlen | ⊢ ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( ♯ ‘ ( 𝐹 prefix 𝑁 ) ) = 𝑁 ) | |
| 25 | 15 23 24 | syl2anc | ⊢ ( 𝜑 → ( ♯ ‘ ( 𝐹 prefix 𝑁 ) ) = 𝑁 ) |
| 26 | 21 25 | eqtrid | ⊢ ( 𝜑 → ( ♯ ‘ 𝐻 ) = 𝑁 ) |
| 27 | 26 | oveq2d | ⊢ ( 𝜑 → ( 0 ..^ ( ♯ ‘ 𝐻 ) ) = ( 0 ..^ 𝑁 ) ) |
| 28 | wrdf | ⊢ ( 𝐹 ∈ Word dom 𝐼 → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐼 ) | |
| 29 | fimass | ⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐼 → ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ⊆ dom 𝐼 ) | |
| 30 | 14 28 29 | 3syl | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ⊆ dom 𝐼 ) |
| 31 | 3 13 30 | 3syl | ⊢ ( 𝜑 → ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ⊆ dom 𝐼 ) |
| 32 | ssdmres | ⊢ ( ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ⊆ dom 𝐼 ↔ dom ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) = ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) | |
| 33 | 31 32 | sylib | ⊢ ( 𝜑 → dom ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) = ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) |
| 34 | 20 27 33 | f1oeq123d | ⊢ ( 𝜑 → ( 𝐻 : ( 0 ..^ ( ♯ ‘ 𝐻 ) ) –1-1-onto→ dom ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) ↔ ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) : ( 0 ..^ 𝑁 ) –1-1-onto→ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) ) |
| 35 | 12 34 | mpbird | ⊢ ( 𝜑 → 𝐻 : ( 0 ..^ ( ♯ ‘ 𝐻 ) ) –1-1-onto→ dom ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) ) |