This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The restriction <. H , Q >. of a trail <. F , P >. to an initial segment of the trail (of length N ) forms a trail on the subgraph S consisting of the edges in the initial segment. (Contributed by AV, 6-Mar-2021) Hypothesis revised using the prefix operation. (Revised by AV, 30-Nov-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | trlres.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| trlres.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | ||
| trlres.d | ⊢ ( 𝜑 → 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) | ||
| trlres.n | ⊢ ( 𝜑 → 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | ||
| trlres.h | ⊢ 𝐻 = ( 𝐹 prefix 𝑁 ) | ||
| trlres.s | ⊢ ( 𝜑 → ( Vtx ‘ 𝑆 ) = 𝑉 ) | ||
| trlres.e | ⊢ ( 𝜑 → ( iEdg ‘ 𝑆 ) = ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) ) | ||
| trlres.q | ⊢ 𝑄 = ( 𝑃 ↾ ( 0 ... 𝑁 ) ) | ||
| Assertion | trlres | ⊢ ( 𝜑 → 𝐻 ( Trails ‘ 𝑆 ) 𝑄 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trlres.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | trlres.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 3 | trlres.d | ⊢ ( 𝜑 → 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) | |
| 4 | trlres.n | ⊢ ( 𝜑 → 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | |
| 5 | trlres.h | ⊢ 𝐻 = ( 𝐹 prefix 𝑁 ) | |
| 6 | trlres.s | ⊢ ( 𝜑 → ( Vtx ‘ 𝑆 ) = 𝑉 ) | |
| 7 | trlres.e | ⊢ ( 𝜑 → ( iEdg ‘ 𝑆 ) = ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) ) | |
| 8 | trlres.q | ⊢ 𝑄 = ( 𝑃 ↾ ( 0 ... 𝑁 ) ) | |
| 9 | trliswlk | ⊢ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) | |
| 10 | 3 9 | syl | ⊢ ( 𝜑 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) |
| 11 | 1 2 10 4 6 7 5 8 | wlkres | ⊢ ( 𝜑 → 𝐻 ( Walks ‘ 𝑆 ) 𝑄 ) |
| 12 | 1 2 3 4 5 | trlreslem | ⊢ ( 𝜑 → 𝐻 : ( 0 ..^ ( ♯ ‘ 𝐻 ) ) –1-1-onto→ dom ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) ) |
| 13 | f1of1 | ⊢ ( 𝐻 : ( 0 ..^ ( ♯ ‘ 𝐻 ) ) –1-1-onto→ dom ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) → 𝐻 : ( 0 ..^ ( ♯ ‘ 𝐻 ) ) –1-1→ dom ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) ) | |
| 14 | df-f1 | ⊢ ( 𝐻 : ( 0 ..^ ( ♯ ‘ 𝐻 ) ) –1-1→ dom ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) ↔ ( 𝐻 : ( 0 ..^ ( ♯ ‘ 𝐻 ) ) ⟶ dom ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) ∧ Fun ◡ 𝐻 ) ) | |
| 15 | 14 | simprbi | ⊢ ( 𝐻 : ( 0 ..^ ( ♯ ‘ 𝐻 ) ) –1-1→ dom ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) → Fun ◡ 𝐻 ) |
| 16 | 12 13 15 | 3syl | ⊢ ( 𝜑 → Fun ◡ 𝐻 ) |
| 17 | istrl | ⊢ ( 𝐻 ( Trails ‘ 𝑆 ) 𝑄 ↔ ( 𝐻 ( Walks ‘ 𝑆 ) 𝑄 ∧ Fun ◡ 𝐻 ) ) | |
| 18 | 11 16 17 | sylanbrc | ⊢ ( 𝜑 → 𝐻 ( Trails ‘ 𝑆 ) 𝑄 ) |