This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The enumeration F of a trail <. F , P >. is injective. (Contributed by AV, 20-Feb-2021) (Proof shortened by AV, 29-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | trlf1.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| Assertion | trlf1 | ⊢ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trlf1.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 2 | istrl | ⊢ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ Fun ◡ 𝐹 ) ) | |
| 3 | 1 | wlkf | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝐹 ∈ Word dom 𝐼 ) |
| 4 | wrdf | ⊢ ( 𝐹 ∈ Word dom 𝐼 → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐼 ) | |
| 5 | df-f1 | ⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ↔ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐼 ∧ Fun ◡ 𝐹 ) ) | |
| 6 | 5 | simplbi2 | ⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐼 → ( Fun ◡ 𝐹 → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ) ) |
| 7 | 3 4 6 | 3syl | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( Fun ◡ 𝐹 → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ) ) |
| 8 | 7 | imp | ⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ Fun ◡ 𝐹 ) → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ) |
| 9 | 2 8 | sylbi | ⊢ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ) |