This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for trlres . Formerly part of proof of eupthres . (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by Mario Carneiro, 3-May-2015) (Revised by AV, 6-Mar-2021) Hypothesis revised using the prefix operation. (Revised by AV, 30-Nov-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | trlres.v | |- V = ( Vtx ` G ) |
|
| trlres.i | |- I = ( iEdg ` G ) |
||
| trlres.d | |- ( ph -> F ( Trails ` G ) P ) |
||
| trlres.n | |- ( ph -> N e. ( 0 ..^ ( # ` F ) ) ) |
||
| trlres.h | |- H = ( F prefix N ) |
||
| Assertion | trlreslem | |- ( ph -> H : ( 0 ..^ ( # ` H ) ) -1-1-onto-> dom ( I |` ( F " ( 0 ..^ N ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trlres.v | |- V = ( Vtx ` G ) |
|
| 2 | trlres.i | |- I = ( iEdg ` G ) |
|
| 3 | trlres.d | |- ( ph -> F ( Trails ` G ) P ) |
|
| 4 | trlres.n | |- ( ph -> N e. ( 0 ..^ ( # ` F ) ) ) |
|
| 5 | trlres.h | |- H = ( F prefix N ) |
|
| 6 | 2 | trlf1 | |- ( F ( Trails ` G ) P -> F : ( 0 ..^ ( # ` F ) ) -1-1-> dom I ) |
| 7 | 3 6 | syl | |- ( ph -> F : ( 0 ..^ ( # ` F ) ) -1-1-> dom I ) |
| 8 | elfzouz2 | |- ( N e. ( 0 ..^ ( # ` F ) ) -> ( # ` F ) e. ( ZZ>= ` N ) ) |
|
| 9 | fzoss2 | |- ( ( # ` F ) e. ( ZZ>= ` N ) -> ( 0 ..^ N ) C_ ( 0 ..^ ( # ` F ) ) ) |
|
| 10 | 4 8 9 | 3syl | |- ( ph -> ( 0 ..^ N ) C_ ( 0 ..^ ( # ` F ) ) ) |
| 11 | f1ores | |- ( ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom I /\ ( 0 ..^ N ) C_ ( 0 ..^ ( # ` F ) ) ) -> ( F |` ( 0 ..^ N ) ) : ( 0 ..^ N ) -1-1-onto-> ( F " ( 0 ..^ N ) ) ) |
|
| 12 | 7 10 11 | syl2anc | |- ( ph -> ( F |` ( 0 ..^ N ) ) : ( 0 ..^ N ) -1-1-onto-> ( F " ( 0 ..^ N ) ) ) |
| 13 | trliswlk | |- ( F ( Trails ` G ) P -> F ( Walks ` G ) P ) |
|
| 14 | 2 | wlkf | |- ( F ( Walks ` G ) P -> F e. Word dom I ) |
| 15 | 3 13 14 | 3syl | |- ( ph -> F e. Word dom I ) |
| 16 | fzossfz | |- ( 0 ..^ ( # ` F ) ) C_ ( 0 ... ( # ` F ) ) |
|
| 17 | 16 4 | sselid | |- ( ph -> N e. ( 0 ... ( # ` F ) ) ) |
| 18 | pfxres | |- ( ( F e. Word dom I /\ N e. ( 0 ... ( # ` F ) ) ) -> ( F prefix N ) = ( F |` ( 0 ..^ N ) ) ) |
|
| 19 | 15 17 18 | syl2anc | |- ( ph -> ( F prefix N ) = ( F |` ( 0 ..^ N ) ) ) |
| 20 | 5 19 | eqtrid | |- ( ph -> H = ( F |` ( 0 ..^ N ) ) ) |
| 21 | 5 | fveq2i | |- ( # ` H ) = ( # ` ( F prefix N ) ) |
| 22 | elfzofz | |- ( N e. ( 0 ..^ ( # ` F ) ) -> N e. ( 0 ... ( # ` F ) ) ) |
|
| 23 | 4 22 | syl | |- ( ph -> N e. ( 0 ... ( # ` F ) ) ) |
| 24 | pfxlen | |- ( ( F e. Word dom I /\ N e. ( 0 ... ( # ` F ) ) ) -> ( # ` ( F prefix N ) ) = N ) |
|
| 25 | 15 23 24 | syl2anc | |- ( ph -> ( # ` ( F prefix N ) ) = N ) |
| 26 | 21 25 | eqtrid | |- ( ph -> ( # ` H ) = N ) |
| 27 | 26 | oveq2d | |- ( ph -> ( 0 ..^ ( # ` H ) ) = ( 0 ..^ N ) ) |
| 28 | wrdf | |- ( F e. Word dom I -> F : ( 0 ..^ ( # ` F ) ) --> dom I ) |
|
| 29 | fimass | |- ( F : ( 0 ..^ ( # ` F ) ) --> dom I -> ( F " ( 0 ..^ N ) ) C_ dom I ) |
|
| 30 | 14 28 29 | 3syl | |- ( F ( Walks ` G ) P -> ( F " ( 0 ..^ N ) ) C_ dom I ) |
| 31 | 3 13 30 | 3syl | |- ( ph -> ( F " ( 0 ..^ N ) ) C_ dom I ) |
| 32 | ssdmres | |- ( ( F " ( 0 ..^ N ) ) C_ dom I <-> dom ( I |` ( F " ( 0 ..^ N ) ) ) = ( F " ( 0 ..^ N ) ) ) |
|
| 33 | 31 32 | sylib | |- ( ph -> dom ( I |` ( F " ( 0 ..^ N ) ) ) = ( F " ( 0 ..^ N ) ) ) |
| 34 | 20 27 33 | f1oeq123d | |- ( ph -> ( H : ( 0 ..^ ( # ` H ) ) -1-1-onto-> dom ( I |` ( F " ( 0 ..^ N ) ) ) <-> ( F |` ( 0 ..^ N ) ) : ( 0 ..^ N ) -1-1-onto-> ( F " ( 0 ..^ N ) ) ) ) |
| 35 | 12 34 | mpbird | |- ( ph -> H : ( 0 ..^ ( # ` H ) ) -1-1-onto-> dom ( I |` ( F " ( 0 ..^ N ) ) ) ) |