This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a class is transitive and any two distinct elements of the class are E-comparable, then every element of that class is transitive. Derived automatically from tratrbVD . (Contributed by Alan Sare, 31-Dec-2011) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tratrb | ⊢ ( ( Tr 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ∧ 𝐵 ∈ 𝐴 ) → Tr 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv | ⊢ Ⅎ 𝑥 Tr 𝐴 | |
| 2 | nfra1 | ⊢ Ⅎ 𝑥 ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) | |
| 3 | nfv | ⊢ Ⅎ 𝑥 𝐵 ∈ 𝐴 | |
| 4 | 1 2 3 | nf3an | ⊢ Ⅎ 𝑥 ( Tr 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ∧ 𝐵 ∈ 𝐴 ) |
| 5 | nfv | ⊢ Ⅎ 𝑦 Tr 𝐴 | |
| 6 | nfra2w | ⊢ Ⅎ 𝑦 ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) | |
| 7 | nfv | ⊢ Ⅎ 𝑦 𝐵 ∈ 𝐴 | |
| 8 | 5 6 7 | nf3an | ⊢ Ⅎ 𝑦 ( Tr 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ∧ 𝐵 ∈ 𝐴 ) |
| 9 | simpl | ⊢ ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) → 𝑥 ∈ 𝑦 ) | |
| 10 | 9 | a1i | ⊢ ( ( Tr 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ∧ 𝐵 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) → 𝑥 ∈ 𝑦 ) ) |
| 11 | simpr | ⊢ ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ 𝐵 ) | |
| 12 | 11 | a1i | ⊢ ( ( Tr 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ∧ 𝐵 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ 𝐵 ) ) |
| 13 | pm3.2an3 | ⊢ ( 𝑥 ∈ 𝑦 → ( 𝑦 ∈ 𝐵 → ( 𝐵 ∈ 𝑥 → ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ∧ 𝐵 ∈ 𝑥 ) ) ) ) | |
| 14 | 10 12 13 | syl6c | ⊢ ( ( Tr 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ∧ 𝐵 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) → ( 𝐵 ∈ 𝑥 → ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ∧ 𝐵 ∈ 𝑥 ) ) ) ) |
| 15 | en3lp | ⊢ ¬ ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ∧ 𝐵 ∈ 𝑥 ) | |
| 16 | con3 | ⊢ ( ( 𝐵 ∈ 𝑥 → ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ∧ 𝐵 ∈ 𝑥 ) ) → ( ¬ ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ∧ 𝐵 ∈ 𝑥 ) → ¬ 𝐵 ∈ 𝑥 ) ) | |
| 17 | 14 15 16 | syl6mpi | ⊢ ( ( Tr 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ∧ 𝐵 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) → ¬ 𝐵 ∈ 𝑥 ) ) |
| 18 | eleq2 | ⊢ ( 𝑥 = 𝐵 → ( 𝑦 ∈ 𝑥 ↔ 𝑦 ∈ 𝐵 ) ) | |
| 19 | 18 | biimprcd | ⊢ ( 𝑦 ∈ 𝐵 → ( 𝑥 = 𝐵 → 𝑦 ∈ 𝑥 ) ) |
| 20 | 12 19 | syl6 | ⊢ ( ( Tr 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ∧ 𝐵 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 = 𝐵 → 𝑦 ∈ 𝑥 ) ) ) |
| 21 | pm3.2 | ⊢ ( 𝑥 ∈ 𝑦 → ( 𝑦 ∈ 𝑥 → ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) ) ) | |
| 22 | 10 20 21 | syl10 | ⊢ ( ( Tr 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ∧ 𝐵 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 = 𝐵 → ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) ) ) ) |
| 23 | en2lp | ⊢ ¬ ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) | |
| 24 | con3 | ⊢ ( ( 𝑥 = 𝐵 → ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) ) → ( ¬ ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → ¬ 𝑥 = 𝐵 ) ) | |
| 25 | 22 23 24 | syl6mpi | ⊢ ( ( Tr 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ∧ 𝐵 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) → ¬ 𝑥 = 𝐵 ) ) |
| 26 | simp3 | ⊢ ( ( Tr 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ∧ 𝐵 ∈ 𝐴 ) → 𝐵 ∈ 𝐴 ) | |
| 27 | simp1 | ⊢ ( ( Tr 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ∧ 𝐵 ∈ 𝐴 ) → Tr 𝐴 ) | |
| 28 | trel | ⊢ ( Tr 𝐴 → ( ( 𝑦 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴 ) → 𝑦 ∈ 𝐴 ) ) | |
| 29 | 28 | expd | ⊢ ( Tr 𝐴 → ( 𝑦 ∈ 𝐵 → ( 𝐵 ∈ 𝐴 → 𝑦 ∈ 𝐴 ) ) ) |
| 30 | 27 12 26 29 | ee121 | ⊢ ( ( Tr 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ∧ 𝐵 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ 𝐴 ) ) |
| 31 | trel | ⊢ ( Tr 𝐴 → ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) ) | |
| 32 | 31 | expd | ⊢ ( Tr 𝐴 → ( 𝑥 ∈ 𝑦 → ( 𝑦 ∈ 𝐴 → 𝑥 ∈ 𝐴 ) ) ) |
| 33 | 27 10 30 32 | ee122 | ⊢ ( ( Tr 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ∧ 𝐵 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) → 𝑥 ∈ 𝐴 ) ) |
| 34 | ralcom | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ↔ ∀ 𝑦 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ) | |
| 35 | 34 | biimpi | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) → ∀ 𝑦 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ) |
| 36 | 35 | 3ad2ant2 | ⊢ ( ( Tr 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ∧ 𝐵 ∈ 𝐴 ) → ∀ 𝑦 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ) |
| 37 | rspsbc2 | ⊢ ( 𝐵 ∈ 𝐴 → ( 𝑥 ∈ 𝐴 → ( ∀ 𝑦 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) → [ 𝑥 / 𝑥 ] [ 𝐵 / 𝑦 ] ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ) ) ) | |
| 38 | 26 33 36 37 | ee121 | ⊢ ( ( Tr 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ∧ 𝐵 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) → [ 𝑥 / 𝑥 ] [ 𝐵 / 𝑦 ] ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ) ) |
| 39 | equid | ⊢ 𝑥 = 𝑥 | |
| 40 | sbceq1a | ⊢ ( 𝑥 = 𝑥 → ( [ 𝐵 / 𝑦 ] ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ↔ [ 𝑥 / 𝑥 ] [ 𝐵 / 𝑦 ] ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ) ) | |
| 41 | 39 40 | ax-mp | ⊢ ( [ 𝐵 / 𝑦 ] ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ↔ [ 𝑥 / 𝑥 ] [ 𝐵 / 𝑦 ] ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ) |
| 42 | 38 41 | imbitrrdi | ⊢ ( ( Tr 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ∧ 𝐵 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) → [ 𝐵 / 𝑦 ] ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ) ) |
| 43 | sbcoreleleq | ⊢ ( 𝐵 ∈ 𝐴 → ( [ 𝐵 / 𝑦 ] ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ↔ ( 𝑥 ∈ 𝐵 ∨ 𝐵 ∈ 𝑥 ∨ 𝑥 = 𝐵 ) ) ) | |
| 44 | 43 | biimpd | ⊢ ( 𝐵 ∈ 𝐴 → ( [ 𝐵 / 𝑦 ] ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) → ( 𝑥 ∈ 𝐵 ∨ 𝐵 ∈ 𝑥 ∨ 𝑥 = 𝐵 ) ) ) |
| 45 | 26 42 44 | sylsyld | ⊢ ( ( Tr 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ∧ 𝐵 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ∈ 𝐵 ∨ 𝐵 ∈ 𝑥 ∨ 𝑥 = 𝐵 ) ) ) |
| 46 | 3ornot23 | ⊢ ( ( ¬ 𝐵 ∈ 𝑥 ∧ ¬ 𝑥 = 𝐵 ) → ( ( 𝑥 ∈ 𝐵 ∨ 𝐵 ∈ 𝑥 ∨ 𝑥 = 𝐵 ) → 𝑥 ∈ 𝐵 ) ) | |
| 47 | 46 | ex | ⊢ ( ¬ 𝐵 ∈ 𝑥 → ( ¬ 𝑥 = 𝐵 → ( ( 𝑥 ∈ 𝐵 ∨ 𝐵 ∈ 𝑥 ∨ 𝑥 = 𝐵 ) → 𝑥 ∈ 𝐵 ) ) ) |
| 48 | 17 25 45 47 | ee222 | ⊢ ( ( Tr 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ∧ 𝐵 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) ) |
| 49 | 8 48 | alrimi | ⊢ ( ( Tr 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ∧ 𝐵 ∈ 𝐴 ) → ∀ 𝑦 ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) ) |
| 50 | 4 49 | alrimi | ⊢ ( ( Tr 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ∧ 𝐵 ∈ 𝐴 ) → ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) ) |
| 51 | dftr2 | ⊢ ( Tr 𝐵 ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) ) | |
| 52 | 50 51 | sylibr | ⊢ ( ( Tr 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ∧ 𝐵 ∈ 𝐴 ) → Tr 𝐵 ) |