This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Substitution of a setvar variable for another setvar variable in a 3-conjunct formula. Derived automatically from sbcoreleleqVD . (Contributed by Alan Sare, 31-Dec-2011) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbcoreleleq | ⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑦 ] ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ↔ ( 𝑥 ∈ 𝐴 ∨ 𝐴 ∈ 𝑥 ∨ 𝑥 = 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbc3or | ⊢ ( [ 𝐴 / 𝑦 ] ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ↔ ( [ 𝐴 / 𝑦 ] 𝑥 ∈ 𝑦 ∨ [ 𝐴 / 𝑦 ] 𝑦 ∈ 𝑥 ∨ [ 𝐴 / 𝑦 ] 𝑥 = 𝑦 ) ) | |
| 2 | sbcel2gv | ⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑦 ] 𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝐴 ) ) | |
| 3 | sbcel1v | ⊢ ( [ 𝐴 / 𝑦 ] 𝑦 ∈ 𝑥 ↔ 𝐴 ∈ 𝑥 ) | |
| 4 | 3 | a1i | ⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑦 ] 𝑦 ∈ 𝑥 ↔ 𝐴 ∈ 𝑥 ) ) |
| 5 | eqsbc2 | ⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑦 ] 𝑥 = 𝑦 ↔ 𝑥 = 𝐴 ) ) | |
| 6 | 3orbi123 | ⊢ ( ( ( [ 𝐴 / 𝑦 ] 𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝐴 ) ∧ ( [ 𝐴 / 𝑦 ] 𝑦 ∈ 𝑥 ↔ 𝐴 ∈ 𝑥 ) ∧ ( [ 𝐴 / 𝑦 ] 𝑥 = 𝑦 ↔ 𝑥 = 𝐴 ) ) → ( ( [ 𝐴 / 𝑦 ] 𝑥 ∈ 𝑦 ∨ [ 𝐴 / 𝑦 ] 𝑦 ∈ 𝑥 ∨ [ 𝐴 / 𝑦 ] 𝑥 = 𝑦 ) ↔ ( 𝑥 ∈ 𝐴 ∨ 𝐴 ∈ 𝑥 ∨ 𝑥 = 𝐴 ) ) ) | |
| 7 | 6 | 3impexpbicomi | ⊢ ( ( [ 𝐴 / 𝑦 ] 𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝐴 ) → ( ( [ 𝐴 / 𝑦 ] 𝑦 ∈ 𝑥 ↔ 𝐴 ∈ 𝑥 ) → ( ( [ 𝐴 / 𝑦 ] 𝑥 = 𝑦 ↔ 𝑥 = 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ∨ 𝐴 ∈ 𝑥 ∨ 𝑥 = 𝐴 ) ↔ ( [ 𝐴 / 𝑦 ] 𝑥 ∈ 𝑦 ∨ [ 𝐴 / 𝑦 ] 𝑦 ∈ 𝑥 ∨ [ 𝐴 / 𝑦 ] 𝑥 = 𝑦 ) ) ) ) ) |
| 8 | 2 4 5 7 | syl3c | ⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝑥 ∈ 𝐴 ∨ 𝐴 ∈ 𝑥 ∨ 𝑥 = 𝐴 ) ↔ ( [ 𝐴 / 𝑦 ] 𝑥 ∈ 𝑦 ∨ [ 𝐴 / 𝑦 ] 𝑦 ∈ 𝑥 ∨ [ 𝐴 / 𝑦 ] 𝑥 = 𝑦 ) ) ) |
| 9 | 1 8 | bitr4id | ⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑦 ] ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ↔ ( 𝑥 ∈ 𝐴 ∨ 𝐴 ∈ 𝑥 ∨ 𝑥 = 𝐴 ) ) ) |