This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: No class has 3-cycle membership loops. This proof was automatically generated from the virtual deduction proof en3lpVD using a translation program. (Contributed by Alan Sare, 24-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | en3lp | ⊢ ¬ ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel | ⊢ ¬ 𝐶 ∈ ∅ | |
| 2 | eleq2 | ⊢ ( { 𝐴 , 𝐵 , 𝐶 } = ∅ → ( 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ↔ 𝐶 ∈ ∅ ) ) | |
| 3 | 1 2 | mtbiri | ⊢ ( { 𝐴 , 𝐵 , 𝐶 } = ∅ → ¬ 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) |
| 4 | tpid3g | ⊢ ( 𝐶 ∈ 𝐴 → 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) | |
| 5 | 3 4 | nsyl | ⊢ ( { 𝐴 , 𝐵 , 𝐶 } = ∅ → ¬ 𝐶 ∈ 𝐴 ) |
| 6 | 5 | intn3an3d | ⊢ ( { 𝐴 , 𝐵 , 𝐶 } = ∅ → ¬ ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) ) |
| 7 | tpex | ⊢ { 𝐴 , 𝐵 , 𝐶 } ∈ V | |
| 8 | zfreg | ⊢ ( ( { 𝐴 , 𝐵 , 𝐶 } ∈ V ∧ { 𝐴 , 𝐵 , 𝐶 } ≠ ∅ ) → ∃ 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } ( 𝑥 ∩ { 𝐴 , 𝐵 , 𝐶 } ) = ∅ ) | |
| 9 | 7 8 | mpan | ⊢ ( { 𝐴 , 𝐵 , 𝐶 } ≠ ∅ → ∃ 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } ( 𝑥 ∩ { 𝐴 , 𝐵 , 𝐶 } ) = ∅ ) |
| 10 | en3lplem2 | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) → ( 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } → ( 𝑥 ∩ { 𝐴 , 𝐵 , 𝐶 } ) ≠ ∅ ) ) | |
| 11 | 10 | com12 | ⊢ ( 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } → ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) → ( 𝑥 ∩ { 𝐴 , 𝐵 , 𝐶 } ) ≠ ∅ ) ) |
| 12 | 11 | necon2bd | ⊢ ( 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } → ( ( 𝑥 ∩ { 𝐴 , 𝐵 , 𝐶 } ) = ∅ → ¬ ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) ) ) |
| 13 | 12 | rexlimiv | ⊢ ( ∃ 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } ( 𝑥 ∩ { 𝐴 , 𝐵 , 𝐶 } ) = ∅ → ¬ ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) ) |
| 14 | 9 13 | syl | ⊢ ( { 𝐴 , 𝐵 , 𝐶 } ≠ ∅ → ¬ ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) ) |
| 15 | 6 14 | pm2.61ine | ⊢ ¬ ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) |