This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function onto a (proper) triple. (Contributed by AV, 20-Jul-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tpf1o.f | ⊢ 𝐹 = ( 𝑥 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑥 = 0 , 𝐴 , if ( 𝑥 = 1 , 𝐵 , 𝐶 ) ) ) | |
| tpf.t | ⊢ 𝑇 = { 𝐴 , 𝐵 , 𝐶 } | ||
| Assertion | tpfo | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → 𝐹 : ( 0 ..^ 3 ) –onto→ 𝑇 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tpf1o.f | ⊢ 𝐹 = ( 𝑥 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑥 = 0 , 𝐴 , if ( 𝑥 = 1 , 𝐵 , 𝐶 ) ) ) | |
| 2 | tpf.t | ⊢ 𝑇 = { 𝐴 , 𝐵 , 𝐶 } | |
| 3 | 1 2 | tpf | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → 𝐹 : ( 0 ..^ 3 ) ⟶ 𝑇 ) |
| 4 | eltpi | ⊢ ( 𝑡 ∈ { 𝐴 , 𝐵 , 𝐶 } → ( 𝑡 = 𝐴 ∨ 𝑡 = 𝐵 ∨ 𝑡 = 𝐶 ) ) | |
| 5 | 3nn | ⊢ 3 ∈ ℕ | |
| 6 | lbfzo0 | ⊢ ( 0 ∈ ( 0 ..^ 3 ) ↔ 3 ∈ ℕ ) | |
| 7 | 5 6 | mpbir | ⊢ 0 ∈ ( 0 ..^ 3 ) |
| 8 | 7 | a1i | ⊢ ( 𝐴 ∈ 𝑉 → 0 ∈ ( 0 ..^ 3 ) ) |
| 9 | fveq2 | ⊢ ( 𝑖 = 0 → ( 𝐹 ‘ 𝑖 ) = ( 𝐹 ‘ 0 ) ) | |
| 10 | 9 | eqeq2d | ⊢ ( 𝑖 = 0 → ( 𝐴 = ( 𝐹 ‘ 𝑖 ) ↔ 𝐴 = ( 𝐹 ‘ 0 ) ) ) |
| 11 | 10 | adantl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑖 = 0 ) → ( 𝐴 = ( 𝐹 ‘ 𝑖 ) ↔ 𝐴 = ( 𝐹 ‘ 0 ) ) ) |
| 12 | 1 | tpf1ofv0 | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐹 ‘ 0 ) = 𝐴 ) |
| 13 | 12 | eqcomd | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 = ( 𝐹 ‘ 0 ) ) |
| 14 | 8 11 13 | rspcedvd | ⊢ ( 𝐴 ∈ 𝑉 → ∃ 𝑖 ∈ ( 0 ..^ 3 ) 𝐴 = ( 𝐹 ‘ 𝑖 ) ) |
| 15 | eqeq1 | ⊢ ( 𝑡 = 𝐴 → ( 𝑡 = ( 𝐹 ‘ 𝑖 ) ↔ 𝐴 = ( 𝐹 ‘ 𝑖 ) ) ) | |
| 16 | 15 | rexbidv | ⊢ ( 𝑡 = 𝐴 → ( ∃ 𝑖 ∈ ( 0 ..^ 3 ) 𝑡 = ( 𝐹 ‘ 𝑖 ) ↔ ∃ 𝑖 ∈ ( 0 ..^ 3 ) 𝐴 = ( 𝐹 ‘ 𝑖 ) ) ) |
| 17 | 14 16 | syl5ibrcom | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑡 = 𝐴 → ∃ 𝑖 ∈ ( 0 ..^ 3 ) 𝑡 = ( 𝐹 ‘ 𝑖 ) ) ) |
| 18 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 19 | 1lt3 | ⊢ 1 < 3 | |
| 20 | elfzo0 | ⊢ ( 1 ∈ ( 0 ..^ 3 ) ↔ ( 1 ∈ ℕ0 ∧ 3 ∈ ℕ ∧ 1 < 3 ) ) | |
| 21 | 18 5 19 20 | mpbir3an | ⊢ 1 ∈ ( 0 ..^ 3 ) |
| 22 | 21 | a1i | ⊢ ( 𝐵 ∈ 𝑉 → 1 ∈ ( 0 ..^ 3 ) ) |
| 23 | fveq2 | ⊢ ( 𝑖 = 1 → ( 𝐹 ‘ 𝑖 ) = ( 𝐹 ‘ 1 ) ) | |
| 24 | 23 | eqeq2d | ⊢ ( 𝑖 = 1 → ( 𝐵 = ( 𝐹 ‘ 𝑖 ) ↔ 𝐵 = ( 𝐹 ‘ 1 ) ) ) |
| 25 | 24 | adantl | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝑖 = 1 ) → ( 𝐵 = ( 𝐹 ‘ 𝑖 ) ↔ 𝐵 = ( 𝐹 ‘ 1 ) ) ) |
| 26 | 1 | tpf1ofv1 | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐹 ‘ 1 ) = 𝐵 ) |
| 27 | 26 | eqcomd | ⊢ ( 𝐵 ∈ 𝑉 → 𝐵 = ( 𝐹 ‘ 1 ) ) |
| 28 | 22 25 27 | rspcedvd | ⊢ ( 𝐵 ∈ 𝑉 → ∃ 𝑖 ∈ ( 0 ..^ 3 ) 𝐵 = ( 𝐹 ‘ 𝑖 ) ) |
| 29 | eqeq1 | ⊢ ( 𝑡 = 𝐵 → ( 𝑡 = ( 𝐹 ‘ 𝑖 ) ↔ 𝐵 = ( 𝐹 ‘ 𝑖 ) ) ) | |
| 30 | 29 | rexbidv | ⊢ ( 𝑡 = 𝐵 → ( ∃ 𝑖 ∈ ( 0 ..^ 3 ) 𝑡 = ( 𝐹 ‘ 𝑖 ) ↔ ∃ 𝑖 ∈ ( 0 ..^ 3 ) 𝐵 = ( 𝐹 ‘ 𝑖 ) ) ) |
| 31 | 28 30 | syl5ibrcom | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝑡 = 𝐵 → ∃ 𝑖 ∈ ( 0 ..^ 3 ) 𝑡 = ( 𝐹 ‘ 𝑖 ) ) ) |
| 32 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
| 33 | 2lt3 | ⊢ 2 < 3 | |
| 34 | elfzo0 | ⊢ ( 2 ∈ ( 0 ..^ 3 ) ↔ ( 2 ∈ ℕ0 ∧ 3 ∈ ℕ ∧ 2 < 3 ) ) | |
| 35 | 32 5 33 34 | mpbir3an | ⊢ 2 ∈ ( 0 ..^ 3 ) |
| 36 | 35 | a1i | ⊢ ( 𝐶 ∈ 𝑉 → 2 ∈ ( 0 ..^ 3 ) ) |
| 37 | fveq2 | ⊢ ( 𝑖 = 2 → ( 𝐹 ‘ 𝑖 ) = ( 𝐹 ‘ 2 ) ) | |
| 38 | 37 | eqeq2d | ⊢ ( 𝑖 = 2 → ( 𝐶 = ( 𝐹 ‘ 𝑖 ) ↔ 𝐶 = ( 𝐹 ‘ 2 ) ) ) |
| 39 | 38 | adantl | ⊢ ( ( 𝐶 ∈ 𝑉 ∧ 𝑖 = 2 ) → ( 𝐶 = ( 𝐹 ‘ 𝑖 ) ↔ 𝐶 = ( 𝐹 ‘ 2 ) ) ) |
| 40 | 1 | tpf1ofv2 | ⊢ ( 𝐶 ∈ 𝑉 → ( 𝐹 ‘ 2 ) = 𝐶 ) |
| 41 | 40 | eqcomd | ⊢ ( 𝐶 ∈ 𝑉 → 𝐶 = ( 𝐹 ‘ 2 ) ) |
| 42 | 36 39 41 | rspcedvd | ⊢ ( 𝐶 ∈ 𝑉 → ∃ 𝑖 ∈ ( 0 ..^ 3 ) 𝐶 = ( 𝐹 ‘ 𝑖 ) ) |
| 43 | eqeq1 | ⊢ ( 𝑡 = 𝐶 → ( 𝑡 = ( 𝐹 ‘ 𝑖 ) ↔ 𝐶 = ( 𝐹 ‘ 𝑖 ) ) ) | |
| 44 | 43 | rexbidv | ⊢ ( 𝑡 = 𝐶 → ( ∃ 𝑖 ∈ ( 0 ..^ 3 ) 𝑡 = ( 𝐹 ‘ 𝑖 ) ↔ ∃ 𝑖 ∈ ( 0 ..^ 3 ) 𝐶 = ( 𝐹 ‘ 𝑖 ) ) ) |
| 45 | 42 44 | syl5ibrcom | ⊢ ( 𝐶 ∈ 𝑉 → ( 𝑡 = 𝐶 → ∃ 𝑖 ∈ ( 0 ..^ 3 ) 𝑡 = ( 𝐹 ‘ 𝑖 ) ) ) |
| 46 | 17 31 45 | 3jaao | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( ( 𝑡 = 𝐴 ∨ 𝑡 = 𝐵 ∨ 𝑡 = 𝐶 ) → ∃ 𝑖 ∈ ( 0 ..^ 3 ) 𝑡 = ( 𝐹 ‘ 𝑖 ) ) ) |
| 47 | 4 46 | syl5com | ⊢ ( 𝑡 ∈ { 𝐴 , 𝐵 , 𝐶 } → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ∃ 𝑖 ∈ ( 0 ..^ 3 ) 𝑡 = ( 𝐹 ‘ 𝑖 ) ) ) |
| 48 | 47 2 | eleq2s | ⊢ ( 𝑡 ∈ 𝑇 → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ∃ 𝑖 ∈ ( 0 ..^ 3 ) 𝑡 = ( 𝐹 ‘ 𝑖 ) ) ) |
| 49 | 48 | com12 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( 𝑡 ∈ 𝑇 → ∃ 𝑖 ∈ ( 0 ..^ 3 ) 𝑡 = ( 𝐹 ‘ 𝑖 ) ) ) |
| 50 | 49 | ralrimiv | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ∀ 𝑡 ∈ 𝑇 ∃ 𝑖 ∈ ( 0 ..^ 3 ) 𝑡 = ( 𝐹 ‘ 𝑖 ) ) |
| 51 | dffo3 | ⊢ ( 𝐹 : ( 0 ..^ 3 ) –onto→ 𝑇 ↔ ( 𝐹 : ( 0 ..^ 3 ) ⟶ 𝑇 ∧ ∀ 𝑡 ∈ 𝑇 ∃ 𝑖 ∈ ( 0 ..^ 3 ) 𝑡 = ( 𝐹 ‘ 𝑖 ) ) ) | |
| 52 | 3 50 51 | sylanbrc | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → 𝐹 : ( 0 ..^ 3 ) –onto→ 𝑇 ) |