This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function onto a (proper) triple. (Contributed by AV, 20-Jul-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tpf1o.f | |- F = ( x e. ( 0 ..^ 3 ) |-> if ( x = 0 , A , if ( x = 1 , B , C ) ) ) |
|
| tpf.t | |- T = { A , B , C } |
||
| Assertion | tpfo | |- ( ( A e. V /\ B e. V /\ C e. V ) -> F : ( 0 ..^ 3 ) -onto-> T ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tpf1o.f | |- F = ( x e. ( 0 ..^ 3 ) |-> if ( x = 0 , A , if ( x = 1 , B , C ) ) ) |
|
| 2 | tpf.t | |- T = { A , B , C } |
|
| 3 | 1 2 | tpf | |- ( ( A e. V /\ B e. V /\ C e. V ) -> F : ( 0 ..^ 3 ) --> T ) |
| 4 | eltpi | |- ( t e. { A , B , C } -> ( t = A \/ t = B \/ t = C ) ) |
|
| 5 | 3nn | |- 3 e. NN |
|
| 6 | lbfzo0 | |- ( 0 e. ( 0 ..^ 3 ) <-> 3 e. NN ) |
|
| 7 | 5 6 | mpbir | |- 0 e. ( 0 ..^ 3 ) |
| 8 | 7 | a1i | |- ( A e. V -> 0 e. ( 0 ..^ 3 ) ) |
| 9 | fveq2 | |- ( i = 0 -> ( F ` i ) = ( F ` 0 ) ) |
|
| 10 | 9 | eqeq2d | |- ( i = 0 -> ( A = ( F ` i ) <-> A = ( F ` 0 ) ) ) |
| 11 | 10 | adantl | |- ( ( A e. V /\ i = 0 ) -> ( A = ( F ` i ) <-> A = ( F ` 0 ) ) ) |
| 12 | 1 | tpf1ofv0 | |- ( A e. V -> ( F ` 0 ) = A ) |
| 13 | 12 | eqcomd | |- ( A e. V -> A = ( F ` 0 ) ) |
| 14 | 8 11 13 | rspcedvd | |- ( A e. V -> E. i e. ( 0 ..^ 3 ) A = ( F ` i ) ) |
| 15 | eqeq1 | |- ( t = A -> ( t = ( F ` i ) <-> A = ( F ` i ) ) ) |
|
| 16 | 15 | rexbidv | |- ( t = A -> ( E. i e. ( 0 ..^ 3 ) t = ( F ` i ) <-> E. i e. ( 0 ..^ 3 ) A = ( F ` i ) ) ) |
| 17 | 14 16 | syl5ibrcom | |- ( A e. V -> ( t = A -> E. i e. ( 0 ..^ 3 ) t = ( F ` i ) ) ) |
| 18 | 1nn0 | |- 1 e. NN0 |
|
| 19 | 1lt3 | |- 1 < 3 |
|
| 20 | elfzo0 | |- ( 1 e. ( 0 ..^ 3 ) <-> ( 1 e. NN0 /\ 3 e. NN /\ 1 < 3 ) ) |
|
| 21 | 18 5 19 20 | mpbir3an | |- 1 e. ( 0 ..^ 3 ) |
| 22 | 21 | a1i | |- ( B e. V -> 1 e. ( 0 ..^ 3 ) ) |
| 23 | fveq2 | |- ( i = 1 -> ( F ` i ) = ( F ` 1 ) ) |
|
| 24 | 23 | eqeq2d | |- ( i = 1 -> ( B = ( F ` i ) <-> B = ( F ` 1 ) ) ) |
| 25 | 24 | adantl | |- ( ( B e. V /\ i = 1 ) -> ( B = ( F ` i ) <-> B = ( F ` 1 ) ) ) |
| 26 | 1 | tpf1ofv1 | |- ( B e. V -> ( F ` 1 ) = B ) |
| 27 | 26 | eqcomd | |- ( B e. V -> B = ( F ` 1 ) ) |
| 28 | 22 25 27 | rspcedvd | |- ( B e. V -> E. i e. ( 0 ..^ 3 ) B = ( F ` i ) ) |
| 29 | eqeq1 | |- ( t = B -> ( t = ( F ` i ) <-> B = ( F ` i ) ) ) |
|
| 30 | 29 | rexbidv | |- ( t = B -> ( E. i e. ( 0 ..^ 3 ) t = ( F ` i ) <-> E. i e. ( 0 ..^ 3 ) B = ( F ` i ) ) ) |
| 31 | 28 30 | syl5ibrcom | |- ( B e. V -> ( t = B -> E. i e. ( 0 ..^ 3 ) t = ( F ` i ) ) ) |
| 32 | 2nn0 | |- 2 e. NN0 |
|
| 33 | 2lt3 | |- 2 < 3 |
|
| 34 | elfzo0 | |- ( 2 e. ( 0 ..^ 3 ) <-> ( 2 e. NN0 /\ 3 e. NN /\ 2 < 3 ) ) |
|
| 35 | 32 5 33 34 | mpbir3an | |- 2 e. ( 0 ..^ 3 ) |
| 36 | 35 | a1i | |- ( C e. V -> 2 e. ( 0 ..^ 3 ) ) |
| 37 | fveq2 | |- ( i = 2 -> ( F ` i ) = ( F ` 2 ) ) |
|
| 38 | 37 | eqeq2d | |- ( i = 2 -> ( C = ( F ` i ) <-> C = ( F ` 2 ) ) ) |
| 39 | 38 | adantl | |- ( ( C e. V /\ i = 2 ) -> ( C = ( F ` i ) <-> C = ( F ` 2 ) ) ) |
| 40 | 1 | tpf1ofv2 | |- ( C e. V -> ( F ` 2 ) = C ) |
| 41 | 40 | eqcomd | |- ( C e. V -> C = ( F ` 2 ) ) |
| 42 | 36 39 41 | rspcedvd | |- ( C e. V -> E. i e. ( 0 ..^ 3 ) C = ( F ` i ) ) |
| 43 | eqeq1 | |- ( t = C -> ( t = ( F ` i ) <-> C = ( F ` i ) ) ) |
|
| 44 | 43 | rexbidv | |- ( t = C -> ( E. i e. ( 0 ..^ 3 ) t = ( F ` i ) <-> E. i e. ( 0 ..^ 3 ) C = ( F ` i ) ) ) |
| 45 | 42 44 | syl5ibrcom | |- ( C e. V -> ( t = C -> E. i e. ( 0 ..^ 3 ) t = ( F ` i ) ) ) |
| 46 | 17 31 45 | 3jaao | |- ( ( A e. V /\ B e. V /\ C e. V ) -> ( ( t = A \/ t = B \/ t = C ) -> E. i e. ( 0 ..^ 3 ) t = ( F ` i ) ) ) |
| 47 | 4 46 | syl5com | |- ( t e. { A , B , C } -> ( ( A e. V /\ B e. V /\ C e. V ) -> E. i e. ( 0 ..^ 3 ) t = ( F ` i ) ) ) |
| 48 | 47 2 | eleq2s | |- ( t e. T -> ( ( A e. V /\ B e. V /\ C e. V ) -> E. i e. ( 0 ..^ 3 ) t = ( F ` i ) ) ) |
| 49 | 48 | com12 | |- ( ( A e. V /\ B e. V /\ C e. V ) -> ( t e. T -> E. i e. ( 0 ..^ 3 ) t = ( F ` i ) ) ) |
| 50 | 49 | ralrimiv | |- ( ( A e. V /\ B e. V /\ C e. V ) -> A. t e. T E. i e. ( 0 ..^ 3 ) t = ( F ` i ) ) |
| 51 | dffo3 | |- ( F : ( 0 ..^ 3 ) -onto-> T <-> ( F : ( 0 ..^ 3 ) --> T /\ A. t e. T E. i e. ( 0 ..^ 3 ) t = ( F ` i ) ) ) |
|
| 52 | 3 50 51 | sylanbrc | |- ( ( A e. V /\ B e. V /\ C e. V ) -> F : ( 0 ..^ 3 ) -onto-> T ) |