This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Inference conjoining and disjoining the antecedents of three implications. (Contributed by Jeff Hankins, 15-Aug-2009) (Proof shortened by Andrew Salmon, 13-May-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 3jaao.1 | ⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) | |
| 3jaao.2 | ⊢ ( 𝜃 → ( 𝜏 → 𝜒 ) ) | ||
| 3jaao.3 | ⊢ ( 𝜂 → ( 𝜁 → 𝜒 ) ) | ||
| Assertion | 3jaao | ⊢ ( ( 𝜑 ∧ 𝜃 ∧ 𝜂 ) → ( ( 𝜓 ∨ 𝜏 ∨ 𝜁 ) → 𝜒 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3jaao.1 | ⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) | |
| 2 | 3jaao.2 | ⊢ ( 𝜃 → ( 𝜏 → 𝜒 ) ) | |
| 3 | 3jaao.3 | ⊢ ( 𝜂 → ( 𝜁 → 𝜒 ) ) | |
| 4 | 1 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝜃 ∧ 𝜂 ) → ( 𝜓 → 𝜒 ) ) |
| 5 | 2 | 3ad2ant2 | ⊢ ( ( 𝜑 ∧ 𝜃 ∧ 𝜂 ) → ( 𝜏 → 𝜒 ) ) |
| 6 | 3 | 3ad2ant3 | ⊢ ( ( 𝜑 ∧ 𝜃 ∧ 𝜂 ) → ( 𝜁 → 𝜒 ) ) |
| 7 | 4 5 6 | 3jaod | ⊢ ( ( 𝜑 ∧ 𝜃 ∧ 𝜂 ) → ( ( 𝜓 ∨ 𝜏 ∨ 𝜁 ) → 𝜒 ) ) |