This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of a one-to-one function onto a triple at 0. (Contributed by AV, 20-Jul-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | tpf1o.f | ⊢ 𝐹 = ( 𝑥 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑥 = 0 , 𝐴 , if ( 𝑥 = 1 , 𝐵 , 𝐶 ) ) ) | |
| Assertion | tpf1ofv0 | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐹 ‘ 0 ) = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tpf1o.f | ⊢ 𝐹 = ( 𝑥 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑥 = 0 , 𝐴 , if ( 𝑥 = 1 , 𝐵 , 𝐶 ) ) ) | |
| 2 | 1 | a1i | ⊢ ( 𝐴 ∈ 𝑉 → 𝐹 = ( 𝑥 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑥 = 0 , 𝐴 , if ( 𝑥 = 1 , 𝐵 , 𝐶 ) ) ) ) |
| 3 | iftrue | ⊢ ( 𝑥 = 0 → if ( 𝑥 = 0 , 𝐴 , if ( 𝑥 = 1 , 𝐵 , 𝐶 ) ) = 𝐴 ) | |
| 4 | 3 | adantl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 = 0 ) → if ( 𝑥 = 0 , 𝐴 , if ( 𝑥 = 1 , 𝐵 , 𝐶 ) ) = 𝐴 ) |
| 5 | 3nn | ⊢ 3 ∈ ℕ | |
| 6 | lbfzo0 | ⊢ ( 0 ∈ ( 0 ..^ 3 ) ↔ 3 ∈ ℕ ) | |
| 7 | 5 6 | mpbir | ⊢ 0 ∈ ( 0 ..^ 3 ) |
| 8 | 7 | a1i | ⊢ ( 𝐴 ∈ 𝑉 → 0 ∈ ( 0 ..^ 3 ) ) |
| 9 | id | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ 𝑉 ) | |
| 10 | 2 4 8 9 | fvmptd | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐹 ‘ 0 ) = 𝐴 ) |