This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A bijection onto a (proper) triple. (Contributed by AV, 21-Jul-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tpf1o.f | ⊢ 𝐹 = ( 𝑥 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑥 = 0 , 𝐴 , if ( 𝑥 = 1 , 𝐵 , 𝐶 ) ) ) | |
| tpf.t | ⊢ 𝑇 = { 𝐴 , 𝐵 , 𝐶 } | ||
| Assertion | tpf1o | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ ( ♯ ‘ 𝑇 ) = 3 ) → 𝐹 : ( 0 ..^ 3 ) –1-1-onto→ 𝑇 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tpf1o.f | ⊢ 𝐹 = ( 𝑥 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑥 = 0 , 𝐴 , if ( 𝑥 = 1 , 𝐵 , 𝐶 ) ) ) | |
| 2 | tpf.t | ⊢ 𝑇 = { 𝐴 , 𝐵 , 𝐶 } | |
| 3 | 1 2 | tpfo | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → 𝐹 : ( 0 ..^ 3 ) –onto→ 𝑇 ) |
| 4 | 3 | adantr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ ( ♯ ‘ 𝑇 ) = 3 ) → 𝐹 : ( 0 ..^ 3 ) –onto→ 𝑇 ) |
| 5 | 3nn0 | ⊢ 3 ∈ ℕ0 | |
| 6 | hashfzo0 | ⊢ ( 3 ∈ ℕ0 → ( ♯ ‘ ( 0 ..^ 3 ) ) = 3 ) | |
| 7 | 5 6 | ax-mp | ⊢ ( ♯ ‘ ( 0 ..^ 3 ) ) = 3 |
| 8 | eqcom | ⊢ ( ( ♯ ‘ 𝑇 ) = 3 ↔ 3 = ( ♯ ‘ 𝑇 ) ) | |
| 9 | 8 | biimpi | ⊢ ( ( ♯ ‘ 𝑇 ) = 3 → 3 = ( ♯ ‘ 𝑇 ) ) |
| 10 | 9 | adantl | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ ( ♯ ‘ 𝑇 ) = 3 ) → 3 = ( ♯ ‘ 𝑇 ) ) |
| 11 | 7 10 | eqtrid | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ ( ♯ ‘ 𝑇 ) = 3 ) → ( ♯ ‘ ( 0 ..^ 3 ) ) = ( ♯ ‘ 𝑇 ) ) |
| 12 | fzofi | ⊢ ( 0 ..^ 3 ) ∈ Fin | |
| 13 | 12 | a1i | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( 0 ..^ 3 ) ∈ Fin ) |
| 14 | tpfi | ⊢ { 𝐴 , 𝐵 , 𝐶 } ∈ Fin | |
| 15 | 2 14 | eqeltri | ⊢ 𝑇 ∈ Fin |
| 16 | 15 | a1i | ⊢ ( ( ♯ ‘ 𝑇 ) = 3 → 𝑇 ∈ Fin ) |
| 17 | hashen | ⊢ ( ( ( 0 ..^ 3 ) ∈ Fin ∧ 𝑇 ∈ Fin ) → ( ( ♯ ‘ ( 0 ..^ 3 ) ) = ( ♯ ‘ 𝑇 ) ↔ ( 0 ..^ 3 ) ≈ 𝑇 ) ) | |
| 18 | 13 16 17 | syl2an | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ ( ♯ ‘ 𝑇 ) = 3 ) → ( ( ♯ ‘ ( 0 ..^ 3 ) ) = ( ♯ ‘ 𝑇 ) ↔ ( 0 ..^ 3 ) ≈ 𝑇 ) ) |
| 19 | 11 18 | mpbid | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ ( ♯ ‘ 𝑇 ) = 3 ) → ( 0 ..^ 3 ) ≈ 𝑇 ) |
| 20 | 15 | a1i | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ ( ♯ ‘ 𝑇 ) = 3 ) → 𝑇 ∈ Fin ) |
| 21 | fofinf1o | ⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –onto→ 𝑇 ∧ ( 0 ..^ 3 ) ≈ 𝑇 ∧ 𝑇 ∈ Fin ) → 𝐹 : ( 0 ..^ 3 ) –1-1-onto→ 𝑇 ) | |
| 22 | 4 19 20 21 | syl3anc | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ ( ♯ ‘ 𝑇 ) = 3 ) → 𝐹 : ( 0 ..^ 3 ) –1-1-onto→ 𝑇 ) |