This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of a one-to-one function onto a triple at 1. (Contributed by AV, 20-Jul-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | tpf1o.f | ⊢ 𝐹 = ( 𝑥 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑥 = 0 , 𝐴 , if ( 𝑥 = 1 , 𝐵 , 𝐶 ) ) ) | |
| Assertion | tpf1ofv1 | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐹 ‘ 1 ) = 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tpf1o.f | ⊢ 𝐹 = ( 𝑥 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑥 = 0 , 𝐴 , if ( 𝑥 = 1 , 𝐵 , 𝐶 ) ) ) | |
| 2 | 1 | a1i | ⊢ ( 𝐵 ∈ 𝑉 → 𝐹 = ( 𝑥 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑥 = 0 , 𝐴 , if ( 𝑥 = 1 , 𝐵 , 𝐶 ) ) ) ) |
| 3 | ax-1ne0 | ⊢ 1 ≠ 0 | |
| 4 | 3 | neii | ⊢ ¬ 1 = 0 |
| 5 | eqeq1 | ⊢ ( 𝑥 = 1 → ( 𝑥 = 0 ↔ 1 = 0 ) ) | |
| 6 | 4 5 | mtbiri | ⊢ ( 𝑥 = 1 → ¬ 𝑥 = 0 ) |
| 7 | 6 | iffalsed | ⊢ ( 𝑥 = 1 → if ( 𝑥 = 0 , 𝐴 , if ( 𝑥 = 1 , 𝐵 , 𝐶 ) ) = if ( 𝑥 = 1 , 𝐵 , 𝐶 ) ) |
| 8 | iftrue | ⊢ ( 𝑥 = 1 → if ( 𝑥 = 1 , 𝐵 , 𝐶 ) = 𝐵 ) | |
| 9 | 7 8 | eqtrd | ⊢ ( 𝑥 = 1 → if ( 𝑥 = 0 , 𝐴 , if ( 𝑥 = 1 , 𝐵 , 𝐶 ) ) = 𝐵 ) |
| 10 | 9 | adantl | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝑥 = 1 ) → if ( 𝑥 = 0 , 𝐴 , if ( 𝑥 = 1 , 𝐵 , 𝐶 ) ) = 𝐵 ) |
| 11 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 12 | 3nn | ⊢ 3 ∈ ℕ | |
| 13 | 1lt3 | ⊢ 1 < 3 | |
| 14 | elfzo0 | ⊢ ( 1 ∈ ( 0 ..^ 3 ) ↔ ( 1 ∈ ℕ0 ∧ 3 ∈ ℕ ∧ 1 < 3 ) ) | |
| 15 | 11 12 13 14 | mpbir3an | ⊢ 1 ∈ ( 0 ..^ 3 ) |
| 16 | 15 | a1i | ⊢ ( 𝐵 ∈ 𝑉 → 1 ∈ ( 0 ..^ 3 ) ) |
| 17 | id | ⊢ ( 𝐵 ∈ 𝑉 → 𝐵 ∈ 𝑉 ) | |
| 18 | 2 10 16 17 | fvmptd | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐹 ‘ 1 ) = 𝐵 ) |