This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function into a (proper) triple. (Contributed by AV, 20-Jul-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tpf1o.f | ⊢ 𝐹 = ( 𝑥 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑥 = 0 , 𝐴 , if ( 𝑥 = 1 , 𝐵 , 𝐶 ) ) ) | |
| tpf.t | ⊢ 𝑇 = { 𝐴 , 𝐵 , 𝐶 } | ||
| Assertion | tpf | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → 𝐹 : ( 0 ..^ 3 ) ⟶ 𝑇 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tpf1o.f | ⊢ 𝐹 = ( 𝑥 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑥 = 0 , 𝐴 , if ( 𝑥 = 1 , 𝐵 , 𝐶 ) ) ) | |
| 2 | tpf.t | ⊢ 𝑇 = { 𝐴 , 𝐵 , 𝐶 } | |
| 3 | tpid1g | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ { 𝐴 , 𝐵 , 𝐶 } ) | |
| 4 | 3 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → 𝐴 ∈ { 𝐴 , 𝐵 , 𝐶 } ) |
| 5 | tpid2g | ⊢ ( 𝐵 ∈ 𝑉 → 𝐵 ∈ { 𝐴 , 𝐵 , 𝐶 } ) | |
| 6 | 5 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → 𝐵 ∈ { 𝐴 , 𝐵 , 𝐶 } ) |
| 7 | tpid3g | ⊢ ( 𝐶 ∈ 𝑉 → 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) | |
| 8 | 7 | 3ad2ant3 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) |
| 9 | 6 8 | ifcld | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → if ( 𝑥 = 1 , 𝐵 , 𝐶 ) ∈ { 𝐴 , 𝐵 , 𝐶 } ) |
| 10 | 4 9 | ifcld | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → if ( 𝑥 = 0 , 𝐴 , if ( 𝑥 = 1 , 𝐵 , 𝐶 ) ) ∈ { 𝐴 , 𝐵 , 𝐶 } ) |
| 11 | 10 2 | eleqtrrdi | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → if ( 𝑥 = 0 , 𝐴 , if ( 𝑥 = 1 , 𝐵 , 𝐶 ) ) ∈ 𝑇 ) |
| 12 | 11 | adantr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ 𝑥 ∈ ( 0 ..^ 3 ) ) → if ( 𝑥 = 0 , 𝐴 , if ( 𝑥 = 1 , 𝐵 , 𝐶 ) ) ∈ 𝑇 ) |
| 13 | 12 1 | fmptd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → 𝐹 : ( 0 ..^ 3 ) ⟶ 𝑇 ) |