This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of all elements whose order divides a fixed integer is a subgroup of any abelian group. (Contributed by Mario Carneiro, 19-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | torsubg.1 | ⊢ 𝑂 = ( od ‘ 𝐺 ) | |
| oddvdssubg.1 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | ||
| Assertion | oddvdssubg | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ ) → { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ 𝑁 } ∈ ( SubGrp ‘ 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | torsubg.1 | ⊢ 𝑂 = ( od ‘ 𝐺 ) | |
| 2 | oddvdssubg.1 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 3 | ssrab2 | ⊢ { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ 𝑁 } ⊆ 𝐵 | |
| 4 | 3 | a1i | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ ) → { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ 𝑁 } ⊆ 𝐵 ) |
| 5 | fveq2 | ⊢ ( 𝑥 = ( 0g ‘ 𝐺 ) → ( 𝑂 ‘ 𝑥 ) = ( 𝑂 ‘ ( 0g ‘ 𝐺 ) ) ) | |
| 6 | 5 | breq1d | ⊢ ( 𝑥 = ( 0g ‘ 𝐺 ) → ( ( 𝑂 ‘ 𝑥 ) ∥ 𝑁 ↔ ( 𝑂 ‘ ( 0g ‘ 𝐺 ) ) ∥ 𝑁 ) ) |
| 7 | ablgrp | ⊢ ( 𝐺 ∈ Abel → 𝐺 ∈ Grp ) | |
| 8 | 7 | adantr | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ ) → 𝐺 ∈ Grp ) |
| 9 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 10 | 2 9 | grpidcl | ⊢ ( 𝐺 ∈ Grp → ( 0g ‘ 𝐺 ) ∈ 𝐵 ) |
| 11 | 8 10 | syl | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ ) → ( 0g ‘ 𝐺 ) ∈ 𝐵 ) |
| 12 | 1 9 | od1 | ⊢ ( 𝐺 ∈ Grp → ( 𝑂 ‘ ( 0g ‘ 𝐺 ) ) = 1 ) |
| 13 | 8 12 | syl | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ ) → ( 𝑂 ‘ ( 0g ‘ 𝐺 ) ) = 1 ) |
| 14 | 1dvds | ⊢ ( 𝑁 ∈ ℤ → 1 ∥ 𝑁 ) | |
| 15 | 14 | adantl | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ ) → 1 ∥ 𝑁 ) |
| 16 | 13 15 | eqbrtrd | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ ) → ( 𝑂 ‘ ( 0g ‘ 𝐺 ) ) ∥ 𝑁 ) |
| 17 | 6 11 16 | elrabd | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ ) → ( 0g ‘ 𝐺 ) ∈ { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ 𝑁 } ) |
| 18 | 17 | ne0d | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ ) → { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ 𝑁 } ≠ ∅ ) |
| 19 | fveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝑂 ‘ 𝑥 ) = ( 𝑂 ‘ 𝑦 ) ) | |
| 20 | 19 | breq1d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑂 ‘ 𝑥 ) ∥ 𝑁 ↔ ( 𝑂 ‘ 𝑦 ) ∥ 𝑁 ) ) |
| 21 | 20 | elrab | ⊢ ( 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ 𝑁 } ↔ ( 𝑦 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑦 ) ∥ 𝑁 ) ) |
| 22 | fveq2 | ⊢ ( 𝑥 = 𝑧 → ( 𝑂 ‘ 𝑥 ) = ( 𝑂 ‘ 𝑧 ) ) | |
| 23 | 22 | breq1d | ⊢ ( 𝑥 = 𝑧 → ( ( 𝑂 ‘ 𝑥 ) ∥ 𝑁 ↔ ( 𝑂 ‘ 𝑧 ) ∥ 𝑁 ) ) |
| 24 | 23 | elrab | ⊢ ( 𝑧 ∈ { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ 𝑁 } ↔ ( 𝑧 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑧 ) ∥ 𝑁 ) ) |
| 25 | fveq2 | ⊢ ( 𝑥 = ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) → ( 𝑂 ‘ 𝑥 ) = ( 𝑂 ‘ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) ) | |
| 26 | 25 | breq1d | ⊢ ( 𝑥 = ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) → ( ( 𝑂 ‘ 𝑥 ) ∥ 𝑁 ↔ ( 𝑂 ‘ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) ∥ 𝑁 ) ) |
| 27 | 8 | adantr | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑦 ) ∥ 𝑁 ) ) → 𝐺 ∈ Grp ) |
| 28 | 27 | adantr | ⊢ ( ( ( ( 𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑦 ) ∥ 𝑁 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑧 ) ∥ 𝑁 ) ) → 𝐺 ∈ Grp ) |
| 29 | simprl | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑦 ) ∥ 𝑁 ) ) → 𝑦 ∈ 𝐵 ) | |
| 30 | 29 | adantr | ⊢ ( ( ( ( 𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑦 ) ∥ 𝑁 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑧 ) ∥ 𝑁 ) ) → 𝑦 ∈ 𝐵 ) |
| 31 | simprl | ⊢ ( ( ( ( 𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑦 ) ∥ 𝑁 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑧 ) ∥ 𝑁 ) ) → 𝑧 ∈ 𝐵 ) | |
| 32 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 33 | 2 32 | grpcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝐵 ) |
| 34 | 28 30 31 33 | syl3anc | ⊢ ( ( ( ( 𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑦 ) ∥ 𝑁 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑧 ) ∥ 𝑁 ) ) → ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝐵 ) |
| 35 | simplll | ⊢ ( ( ( ( 𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑦 ) ∥ 𝑁 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑧 ) ∥ 𝑁 ) ) → 𝐺 ∈ Abel ) | |
| 36 | simpllr | ⊢ ( ( ( ( 𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑦 ) ∥ 𝑁 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑧 ) ∥ 𝑁 ) ) → 𝑁 ∈ ℤ ) | |
| 37 | eqid | ⊢ ( .g ‘ 𝐺 ) = ( .g ‘ 𝐺 ) | |
| 38 | 2 37 32 | mulgdi | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑁 ∈ ℤ ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑁 ( .g ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) = ( ( 𝑁 ( .g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑁 ( .g ‘ 𝐺 ) 𝑧 ) ) ) |
| 39 | 35 36 30 31 38 | syl13anc | ⊢ ( ( ( ( 𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑦 ) ∥ 𝑁 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑧 ) ∥ 𝑁 ) ) → ( 𝑁 ( .g ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) = ( ( 𝑁 ( .g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑁 ( .g ‘ 𝐺 ) 𝑧 ) ) ) |
| 40 | simprr | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑦 ) ∥ 𝑁 ) ) → ( 𝑂 ‘ 𝑦 ) ∥ 𝑁 ) | |
| 41 | 40 | adantr | ⊢ ( ( ( ( 𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑦 ) ∥ 𝑁 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑧 ) ∥ 𝑁 ) ) → ( 𝑂 ‘ 𝑦 ) ∥ 𝑁 ) |
| 42 | 2 1 37 9 | oddvds | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ 𝐵 ∧ 𝑁 ∈ ℤ ) → ( ( 𝑂 ‘ 𝑦 ) ∥ 𝑁 ↔ ( 𝑁 ( .g ‘ 𝐺 ) 𝑦 ) = ( 0g ‘ 𝐺 ) ) ) |
| 43 | 28 30 36 42 | syl3anc | ⊢ ( ( ( ( 𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑦 ) ∥ 𝑁 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑧 ) ∥ 𝑁 ) ) → ( ( 𝑂 ‘ 𝑦 ) ∥ 𝑁 ↔ ( 𝑁 ( .g ‘ 𝐺 ) 𝑦 ) = ( 0g ‘ 𝐺 ) ) ) |
| 44 | 41 43 | mpbid | ⊢ ( ( ( ( 𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑦 ) ∥ 𝑁 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑧 ) ∥ 𝑁 ) ) → ( 𝑁 ( .g ‘ 𝐺 ) 𝑦 ) = ( 0g ‘ 𝐺 ) ) |
| 45 | simprr | ⊢ ( ( ( ( 𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑦 ) ∥ 𝑁 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑧 ) ∥ 𝑁 ) ) → ( 𝑂 ‘ 𝑧 ) ∥ 𝑁 ) | |
| 46 | 2 1 37 9 | oddvds | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝐵 ∧ 𝑁 ∈ ℤ ) → ( ( 𝑂 ‘ 𝑧 ) ∥ 𝑁 ↔ ( 𝑁 ( .g ‘ 𝐺 ) 𝑧 ) = ( 0g ‘ 𝐺 ) ) ) |
| 47 | 28 31 36 46 | syl3anc | ⊢ ( ( ( ( 𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑦 ) ∥ 𝑁 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑧 ) ∥ 𝑁 ) ) → ( ( 𝑂 ‘ 𝑧 ) ∥ 𝑁 ↔ ( 𝑁 ( .g ‘ 𝐺 ) 𝑧 ) = ( 0g ‘ 𝐺 ) ) ) |
| 48 | 45 47 | mpbid | ⊢ ( ( ( ( 𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑦 ) ∥ 𝑁 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑧 ) ∥ 𝑁 ) ) → ( 𝑁 ( .g ‘ 𝐺 ) 𝑧 ) = ( 0g ‘ 𝐺 ) ) |
| 49 | 44 48 | oveq12d | ⊢ ( ( ( ( 𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑦 ) ∥ 𝑁 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑧 ) ∥ 𝑁 ) ) → ( ( 𝑁 ( .g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑁 ( .g ‘ 𝐺 ) 𝑧 ) ) = ( ( 0g ‘ 𝐺 ) ( +g ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) ) |
| 50 | 28 10 | syl | ⊢ ( ( ( ( 𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑦 ) ∥ 𝑁 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑧 ) ∥ 𝑁 ) ) → ( 0g ‘ 𝐺 ) ∈ 𝐵 ) |
| 51 | 2 32 9 | grplid | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 0g ‘ 𝐺 ) ∈ 𝐵 ) → ( ( 0g ‘ 𝐺 ) ( +g ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) = ( 0g ‘ 𝐺 ) ) |
| 52 | 28 50 51 | syl2anc | ⊢ ( ( ( ( 𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑦 ) ∥ 𝑁 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑧 ) ∥ 𝑁 ) ) → ( ( 0g ‘ 𝐺 ) ( +g ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) = ( 0g ‘ 𝐺 ) ) |
| 53 | 39 49 52 | 3eqtrd | ⊢ ( ( ( ( 𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑦 ) ∥ 𝑁 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑧 ) ∥ 𝑁 ) ) → ( 𝑁 ( .g ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) = ( 0g ‘ 𝐺 ) ) |
| 54 | 2 1 37 9 | oddvds | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝐵 ∧ 𝑁 ∈ ℤ ) → ( ( 𝑂 ‘ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) ∥ 𝑁 ↔ ( 𝑁 ( .g ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) = ( 0g ‘ 𝐺 ) ) ) |
| 55 | 28 34 36 54 | syl3anc | ⊢ ( ( ( ( 𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑦 ) ∥ 𝑁 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑧 ) ∥ 𝑁 ) ) → ( ( 𝑂 ‘ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) ∥ 𝑁 ↔ ( 𝑁 ( .g ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) = ( 0g ‘ 𝐺 ) ) ) |
| 56 | 53 55 | mpbird | ⊢ ( ( ( ( 𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑦 ) ∥ 𝑁 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑧 ) ∥ 𝑁 ) ) → ( 𝑂 ‘ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) ∥ 𝑁 ) |
| 57 | 26 34 56 | elrabd | ⊢ ( ( ( ( 𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑦 ) ∥ 𝑁 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑧 ) ∥ 𝑁 ) ) → ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ 𝑁 } ) |
| 58 | 24 57 | sylan2b | ⊢ ( ( ( ( 𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑦 ) ∥ 𝑁 ) ) ∧ 𝑧 ∈ { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ 𝑁 } ) → ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ 𝑁 } ) |
| 59 | 58 | ralrimiva | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑦 ) ∥ 𝑁 ) ) → ∀ 𝑧 ∈ { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ 𝑁 } ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ 𝑁 } ) |
| 60 | fveq2 | ⊢ ( 𝑥 = ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) → ( 𝑂 ‘ 𝑥 ) = ( 𝑂 ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ) | |
| 61 | 60 | breq1d | ⊢ ( 𝑥 = ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) → ( ( 𝑂 ‘ 𝑥 ) ∥ 𝑁 ↔ ( 𝑂 ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ∥ 𝑁 ) ) |
| 62 | eqid | ⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) | |
| 63 | 2 62 | grpinvcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝐵 ) |
| 64 | 27 29 63 | syl2anc | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑦 ) ∥ 𝑁 ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝐵 ) |
| 65 | 1 62 2 | odinv | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ 𝐵 ) → ( 𝑂 ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) = ( 𝑂 ‘ 𝑦 ) ) |
| 66 | 27 29 65 | syl2anc | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑦 ) ∥ 𝑁 ) ) → ( 𝑂 ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) = ( 𝑂 ‘ 𝑦 ) ) |
| 67 | 66 40 | eqbrtrd | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑦 ) ∥ 𝑁 ) ) → ( 𝑂 ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ∥ 𝑁 ) |
| 68 | 61 64 67 | elrabd | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑦 ) ∥ 𝑁 ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ 𝑁 } ) |
| 69 | 59 68 | jca | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑦 ) ∥ 𝑁 ) ) → ( ∀ 𝑧 ∈ { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ 𝑁 } ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ 𝑁 } ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ 𝑁 } ) ) |
| 70 | 21 69 | sylan2b | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ ) ∧ 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ 𝑁 } ) → ( ∀ 𝑧 ∈ { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ 𝑁 } ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ 𝑁 } ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ 𝑁 } ) ) |
| 71 | 70 | ralrimiva | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ ) → ∀ 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ 𝑁 } ( ∀ 𝑧 ∈ { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ 𝑁 } ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ 𝑁 } ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ 𝑁 } ) ) |
| 72 | 2 32 62 | issubg2 | ⊢ ( 𝐺 ∈ Grp → ( { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ 𝑁 } ∈ ( SubGrp ‘ 𝐺 ) ↔ ( { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ 𝑁 } ⊆ 𝐵 ∧ { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ 𝑁 } ≠ ∅ ∧ ∀ 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ 𝑁 } ( ∀ 𝑧 ∈ { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ 𝑁 } ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ 𝑁 } ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ 𝑁 } ) ) ) ) |
| 73 | 8 72 | syl | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ ) → ( { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ 𝑁 } ∈ ( SubGrp ‘ 𝐺 ) ↔ ( { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ 𝑁 } ⊆ 𝐵 ∧ { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ 𝑁 } ≠ ∅ ∧ ∀ 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ 𝑁 } ( ∀ 𝑧 ∈ { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ 𝑁 } ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ 𝑁 } ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ 𝑁 } ) ) ) ) |
| 74 | 4 18 71 73 | mpbir3and | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ ) → { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ 𝑁 } ∈ ( SubGrp ‘ 𝐺 ) ) |