This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Given any absolute value over a ring, augmenting the ring with the absolute value produces a normed ring. (Contributed by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tngnrg.t | ⊢ 𝑇 = ( 𝑅 toNrmGrp 𝐹 ) | |
| tngnrg.a | ⊢ 𝐴 = ( AbsVal ‘ 𝑅 ) | ||
| Assertion | tngnrg | ⊢ ( 𝐹 ∈ 𝐴 → 𝑇 ∈ NrmRing ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tngnrg.t | ⊢ 𝑇 = ( 𝑅 toNrmGrp 𝐹 ) | |
| 2 | tngnrg.a | ⊢ 𝐴 = ( AbsVal ‘ 𝑅 ) | |
| 3 | 2 | abvrcl | ⊢ ( 𝐹 ∈ 𝐴 → 𝑅 ∈ Ring ) |
| 4 | ringgrp | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) | |
| 5 | 3 4 | syl | ⊢ ( 𝐹 ∈ 𝐴 → 𝑅 ∈ Grp ) |
| 6 | eqid | ⊢ ( -g ‘ 𝑅 ) = ( -g ‘ 𝑅 ) | |
| 7 | 1 6 | tngds | ⊢ ( 𝐹 ∈ 𝐴 → ( 𝐹 ∘ ( -g ‘ 𝑅 ) ) = ( dist ‘ 𝑇 ) ) |
| 8 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 9 | 8 2 6 | abvmet | ⊢ ( 𝐹 ∈ 𝐴 → ( 𝐹 ∘ ( -g ‘ 𝑅 ) ) ∈ ( Met ‘ ( Base ‘ 𝑅 ) ) ) |
| 10 | 7 9 | eqeltrrd | ⊢ ( 𝐹 ∈ 𝐴 → ( dist ‘ 𝑇 ) ∈ ( Met ‘ ( Base ‘ 𝑅 ) ) ) |
| 11 | 2 8 | abvf | ⊢ ( 𝐹 ∈ 𝐴 → 𝐹 : ( Base ‘ 𝑅 ) ⟶ ℝ ) |
| 12 | eqid | ⊢ ( dist ‘ 𝑇 ) = ( dist ‘ 𝑇 ) | |
| 13 | 1 8 12 | tngngp2 | ⊢ ( 𝐹 : ( Base ‘ 𝑅 ) ⟶ ℝ → ( 𝑇 ∈ NrmGrp ↔ ( 𝑅 ∈ Grp ∧ ( dist ‘ 𝑇 ) ∈ ( Met ‘ ( Base ‘ 𝑅 ) ) ) ) ) |
| 14 | 11 13 | syl | ⊢ ( 𝐹 ∈ 𝐴 → ( 𝑇 ∈ NrmGrp ↔ ( 𝑅 ∈ Grp ∧ ( dist ‘ 𝑇 ) ∈ ( Met ‘ ( Base ‘ 𝑅 ) ) ) ) ) |
| 15 | 5 10 14 | mpbir2and | ⊢ ( 𝐹 ∈ 𝐴 → 𝑇 ∈ NrmGrp ) |
| 16 | reex | ⊢ ℝ ∈ V | |
| 17 | 1 8 16 | tngnm | ⊢ ( ( 𝑅 ∈ Grp ∧ 𝐹 : ( Base ‘ 𝑅 ) ⟶ ℝ ) → 𝐹 = ( norm ‘ 𝑇 ) ) |
| 18 | 5 11 17 | syl2anc | ⊢ ( 𝐹 ∈ 𝐴 → 𝐹 = ( norm ‘ 𝑇 ) ) |
| 19 | eqidd | ⊢ ( 𝐹 ∈ 𝐴 → ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) ) | |
| 20 | 1 8 | tngbas | ⊢ ( 𝐹 ∈ 𝐴 → ( Base ‘ 𝑅 ) = ( Base ‘ 𝑇 ) ) |
| 21 | eqid | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) | |
| 22 | 1 21 | tngplusg | ⊢ ( 𝐹 ∈ 𝐴 → ( +g ‘ 𝑅 ) = ( +g ‘ 𝑇 ) ) |
| 23 | 22 | oveqdr | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝑇 ) 𝑦 ) ) |
| 24 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 25 | 1 24 | tngmulr | ⊢ ( 𝐹 ∈ 𝐴 → ( .r ‘ 𝑅 ) = ( .r ‘ 𝑇 ) ) |
| 26 | 25 | oveqdr | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝑇 ) 𝑦 ) ) |
| 27 | 19 20 23 26 | abvpropd | ⊢ ( 𝐹 ∈ 𝐴 → ( AbsVal ‘ 𝑅 ) = ( AbsVal ‘ 𝑇 ) ) |
| 28 | 2 27 | eqtrid | ⊢ ( 𝐹 ∈ 𝐴 → 𝐴 = ( AbsVal ‘ 𝑇 ) ) |
| 29 | 18 28 | eleq12d | ⊢ ( 𝐹 ∈ 𝐴 → ( 𝐹 ∈ 𝐴 ↔ ( norm ‘ 𝑇 ) ∈ ( AbsVal ‘ 𝑇 ) ) ) |
| 30 | 29 | ibi | ⊢ ( 𝐹 ∈ 𝐴 → ( norm ‘ 𝑇 ) ∈ ( AbsVal ‘ 𝑇 ) ) |
| 31 | eqid | ⊢ ( norm ‘ 𝑇 ) = ( norm ‘ 𝑇 ) | |
| 32 | eqid | ⊢ ( AbsVal ‘ 𝑇 ) = ( AbsVal ‘ 𝑇 ) | |
| 33 | 31 32 | isnrg | ⊢ ( 𝑇 ∈ NrmRing ↔ ( 𝑇 ∈ NrmGrp ∧ ( norm ‘ 𝑇 ) ∈ ( AbsVal ‘ 𝑇 ) ) ) |
| 34 | 15 30 33 | sylanbrc | ⊢ ( 𝐹 ∈ 𝐴 → 𝑇 ∈ NrmRing ) |