This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The metric function of a structure augmented with a norm. (Contributed by Mario Carneiro, 3-Oct-2015) (Proof shortened by AV, 29-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tngbas.t | ⊢ 𝑇 = ( 𝐺 toNrmGrp 𝑁 ) | |
| tngds.2 | ⊢ − = ( -g ‘ 𝐺 ) | ||
| Assertion | tngds | ⊢ ( 𝑁 ∈ 𝑉 → ( 𝑁 ∘ − ) = ( dist ‘ 𝑇 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tngbas.t | ⊢ 𝑇 = ( 𝐺 toNrmGrp 𝑁 ) | |
| 2 | tngds.2 | ⊢ − = ( -g ‘ 𝐺 ) | |
| 3 | dsid | ⊢ dist = Slot ( dist ‘ ndx ) | |
| 4 | dsndxntsetndx | ⊢ ( dist ‘ ndx ) ≠ ( TopSet ‘ ndx ) | |
| 5 | 3 4 | setsnid | ⊢ ( dist ‘ ( 𝐺 sSet 〈 ( dist ‘ ndx ) , ( 𝑁 ∘ − ) 〉 ) ) = ( dist ‘ ( ( 𝐺 sSet 〈 ( dist ‘ ndx ) , ( 𝑁 ∘ − ) 〉 ) sSet 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ ( 𝑁 ∘ − ) ) 〉 ) ) |
| 6 | 2 | fvexi | ⊢ − ∈ V |
| 7 | coexg | ⊢ ( ( 𝑁 ∈ 𝑉 ∧ − ∈ V ) → ( 𝑁 ∘ − ) ∈ V ) | |
| 8 | 6 7 | mpan2 | ⊢ ( 𝑁 ∈ 𝑉 → ( 𝑁 ∘ − ) ∈ V ) |
| 9 | 3 | setsid | ⊢ ( ( 𝐺 ∈ V ∧ ( 𝑁 ∘ − ) ∈ V ) → ( 𝑁 ∘ − ) = ( dist ‘ ( 𝐺 sSet 〈 ( dist ‘ ndx ) , ( 𝑁 ∘ − ) 〉 ) ) ) |
| 10 | 8 9 | sylan2 | ⊢ ( ( 𝐺 ∈ V ∧ 𝑁 ∈ 𝑉 ) → ( 𝑁 ∘ − ) = ( dist ‘ ( 𝐺 sSet 〈 ( dist ‘ ndx ) , ( 𝑁 ∘ − ) 〉 ) ) ) |
| 11 | eqid | ⊢ ( 𝑁 ∘ − ) = ( 𝑁 ∘ − ) | |
| 12 | eqid | ⊢ ( MetOpen ‘ ( 𝑁 ∘ − ) ) = ( MetOpen ‘ ( 𝑁 ∘ − ) ) | |
| 13 | 1 2 11 12 | tngval | ⊢ ( ( 𝐺 ∈ V ∧ 𝑁 ∈ 𝑉 ) → 𝑇 = ( ( 𝐺 sSet 〈 ( dist ‘ ndx ) , ( 𝑁 ∘ − ) 〉 ) sSet 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ ( 𝑁 ∘ − ) ) 〉 ) ) |
| 14 | 13 | fveq2d | ⊢ ( ( 𝐺 ∈ V ∧ 𝑁 ∈ 𝑉 ) → ( dist ‘ 𝑇 ) = ( dist ‘ ( ( 𝐺 sSet 〈 ( dist ‘ ndx ) , ( 𝑁 ∘ − ) 〉 ) sSet 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ ( 𝑁 ∘ − ) ) 〉 ) ) ) |
| 15 | 5 10 14 | 3eqtr4a | ⊢ ( ( 𝐺 ∈ V ∧ 𝑁 ∈ 𝑉 ) → ( 𝑁 ∘ − ) = ( dist ‘ 𝑇 ) ) |
| 16 | co02 | ⊢ ( 𝑁 ∘ ∅ ) = ∅ | |
| 17 | 3 | str0 | ⊢ ∅ = ( dist ‘ ∅ ) |
| 18 | 16 17 | eqtri | ⊢ ( 𝑁 ∘ ∅ ) = ( dist ‘ ∅ ) |
| 19 | fvprc | ⊢ ( ¬ 𝐺 ∈ V → ( -g ‘ 𝐺 ) = ∅ ) | |
| 20 | 2 19 | eqtrid | ⊢ ( ¬ 𝐺 ∈ V → − = ∅ ) |
| 21 | 20 | coeq2d | ⊢ ( ¬ 𝐺 ∈ V → ( 𝑁 ∘ − ) = ( 𝑁 ∘ ∅ ) ) |
| 22 | reldmtng | ⊢ Rel dom toNrmGrp | |
| 23 | 22 | ovprc1 | ⊢ ( ¬ 𝐺 ∈ V → ( 𝐺 toNrmGrp 𝑁 ) = ∅ ) |
| 24 | 1 23 | eqtrid | ⊢ ( ¬ 𝐺 ∈ V → 𝑇 = ∅ ) |
| 25 | 24 | fveq2d | ⊢ ( ¬ 𝐺 ∈ V → ( dist ‘ 𝑇 ) = ( dist ‘ ∅ ) ) |
| 26 | 18 21 25 | 3eqtr4a | ⊢ ( ¬ 𝐺 ∈ V → ( 𝑁 ∘ − ) = ( dist ‘ 𝑇 ) ) |
| 27 | 26 | adantr | ⊢ ( ( ¬ 𝐺 ∈ V ∧ 𝑁 ∈ 𝑉 ) → ( 𝑁 ∘ − ) = ( dist ‘ 𝑇 ) ) |
| 28 | 15 27 | pm2.61ian | ⊢ ( 𝑁 ∈ 𝑉 → ( 𝑁 ∘ − ) = ( dist ‘ 𝑇 ) ) |