This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Given any absolute value over a ring, augmenting the ring with the absolute value produces a normed ring. (Contributed by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tngnrg.t | |- T = ( R toNrmGrp F ) |
|
| tngnrg.a | |- A = ( AbsVal ` R ) |
||
| Assertion | tngnrg | |- ( F e. A -> T e. NrmRing ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tngnrg.t | |- T = ( R toNrmGrp F ) |
|
| 2 | tngnrg.a | |- A = ( AbsVal ` R ) |
|
| 3 | 2 | abvrcl | |- ( F e. A -> R e. Ring ) |
| 4 | ringgrp | |- ( R e. Ring -> R e. Grp ) |
|
| 5 | 3 4 | syl | |- ( F e. A -> R e. Grp ) |
| 6 | eqid | |- ( -g ` R ) = ( -g ` R ) |
|
| 7 | 1 6 | tngds | |- ( F e. A -> ( F o. ( -g ` R ) ) = ( dist ` T ) ) |
| 8 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 9 | 8 2 6 | abvmet | |- ( F e. A -> ( F o. ( -g ` R ) ) e. ( Met ` ( Base ` R ) ) ) |
| 10 | 7 9 | eqeltrrd | |- ( F e. A -> ( dist ` T ) e. ( Met ` ( Base ` R ) ) ) |
| 11 | 2 8 | abvf | |- ( F e. A -> F : ( Base ` R ) --> RR ) |
| 12 | eqid | |- ( dist ` T ) = ( dist ` T ) |
|
| 13 | 1 8 12 | tngngp2 | |- ( F : ( Base ` R ) --> RR -> ( T e. NrmGrp <-> ( R e. Grp /\ ( dist ` T ) e. ( Met ` ( Base ` R ) ) ) ) ) |
| 14 | 11 13 | syl | |- ( F e. A -> ( T e. NrmGrp <-> ( R e. Grp /\ ( dist ` T ) e. ( Met ` ( Base ` R ) ) ) ) ) |
| 15 | 5 10 14 | mpbir2and | |- ( F e. A -> T e. NrmGrp ) |
| 16 | reex | |- RR e. _V |
|
| 17 | 1 8 16 | tngnm | |- ( ( R e. Grp /\ F : ( Base ` R ) --> RR ) -> F = ( norm ` T ) ) |
| 18 | 5 11 17 | syl2anc | |- ( F e. A -> F = ( norm ` T ) ) |
| 19 | eqidd | |- ( F e. A -> ( Base ` R ) = ( Base ` R ) ) |
|
| 20 | 1 8 | tngbas | |- ( F e. A -> ( Base ` R ) = ( Base ` T ) ) |
| 21 | eqid | |- ( +g ` R ) = ( +g ` R ) |
|
| 22 | 1 21 | tngplusg | |- ( F e. A -> ( +g ` R ) = ( +g ` T ) ) |
| 23 | 22 | oveqdr | |- ( ( F e. A /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) -> ( x ( +g ` R ) y ) = ( x ( +g ` T ) y ) ) |
| 24 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 25 | 1 24 | tngmulr | |- ( F e. A -> ( .r ` R ) = ( .r ` T ) ) |
| 26 | 25 | oveqdr | |- ( ( F e. A /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) -> ( x ( .r ` R ) y ) = ( x ( .r ` T ) y ) ) |
| 27 | 19 20 23 26 | abvpropd | |- ( F e. A -> ( AbsVal ` R ) = ( AbsVal ` T ) ) |
| 28 | 2 27 | eqtrid | |- ( F e. A -> A = ( AbsVal ` T ) ) |
| 29 | 18 28 | eleq12d | |- ( F e. A -> ( F e. A <-> ( norm ` T ) e. ( AbsVal ` T ) ) ) |
| 30 | 29 | ibi | |- ( F e. A -> ( norm ` T ) e. ( AbsVal ` T ) ) |
| 31 | eqid | |- ( norm ` T ) = ( norm ` T ) |
|
| 32 | eqid | |- ( AbsVal ` T ) = ( AbsVal ` T ) |
|
| 33 | 31 32 | isnrg | |- ( T e. NrmRing <-> ( T e. NrmGrp /\ ( norm ` T ) e. ( AbsVal ` T ) ) ) |
| 34 | 15 30 33 | sylanbrc | |- ( F e. A -> T e. NrmRing ) |