This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two structures with the same base, hom-sets and composition operation have the same terminal objects. (Contributed by Zhi Wang, 26-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | initopropd.1 | ⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) | |
| initopropd.2 | ⊢ ( 𝜑 → ( compf ‘ 𝐶 ) = ( compf ‘ 𝐷 ) ) | ||
| Assertion | termopropd | ⊢ ( 𝜑 → ( TermO ‘ 𝐶 ) = ( TermO ‘ 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | initopropd.1 | ⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) | |
| 2 | initopropd.2 | ⊢ ( 𝜑 → ( compf ‘ 𝐶 ) = ( compf ‘ 𝐷 ) ) | |
| 3 | 1 | adantr | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ V ) → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) |
| 4 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ V ) → ( compf ‘ 𝐶 ) = ( compf ‘ 𝐷 ) ) |
| 5 | simpr | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ V ) → ¬ 𝐶 ∈ V ) | |
| 6 | 3 4 5 | termopropdlem | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ V ) → ( TermO ‘ 𝐶 ) = ( TermO ‘ 𝐷 ) ) |
| 7 | 1 | adantr | ⊢ ( ( 𝜑 ∧ ¬ 𝐷 ∈ V ) → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) |
| 8 | 7 | eqcomd | ⊢ ( ( 𝜑 ∧ ¬ 𝐷 ∈ V ) → ( Homf ‘ 𝐷 ) = ( Homf ‘ 𝐶 ) ) |
| 9 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ¬ 𝐷 ∈ V ) → ( compf ‘ 𝐶 ) = ( compf ‘ 𝐷 ) ) |
| 10 | 9 | eqcomd | ⊢ ( ( 𝜑 ∧ ¬ 𝐷 ∈ V ) → ( compf ‘ 𝐷 ) = ( compf ‘ 𝐶 ) ) |
| 11 | simpr | ⊢ ( ( 𝜑 ∧ ¬ 𝐷 ∈ V ) → ¬ 𝐷 ∈ V ) | |
| 12 | 8 10 11 | termopropdlem | ⊢ ( ( 𝜑 ∧ ¬ 𝐷 ∈ V ) → ( TermO ‘ 𝐷 ) = ( TermO ‘ 𝐶 ) ) |
| 13 | 12 | eqcomd | ⊢ ( ( 𝜑 ∧ ¬ 𝐷 ∈ V ) → ( TermO ‘ 𝐶 ) = ( TermO ‘ 𝐷 ) ) |
| 14 | 1 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) |
| 15 | 14 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) ∧ 𝐶 ∈ Cat ) → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) |
| 16 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 17 | eqid | ⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) | |
| 18 | eqidd | ⊢ ( ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) ∧ 𝐶 ∈ Cat ) → ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) ) | |
| 19 | 15 | homfeqbas | ⊢ ( ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) ∧ 𝐶 ∈ Cat ) → ( Base ‘ 𝐶 ) = ( Base ‘ 𝐷 ) ) |
| 20 | 16 17 18 19 | homfeq | ⊢ ( ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) ∧ 𝐶 ∈ Cat ) → ( ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ↔ ∀ 𝑏 ∈ ( Base ‘ 𝐶 ) ∀ 𝑎 ∈ ( Base ‘ 𝐶 ) ( 𝑏 ( Hom ‘ 𝐶 ) 𝑎 ) = ( 𝑏 ( Hom ‘ 𝐷 ) 𝑎 ) ) ) |
| 21 | ralcom | ⊢ ( ∀ 𝑏 ∈ ( Base ‘ 𝐶 ) ∀ 𝑎 ∈ ( Base ‘ 𝐶 ) ( 𝑏 ( Hom ‘ 𝐶 ) 𝑎 ) = ( 𝑏 ( Hom ‘ 𝐷 ) 𝑎 ) ↔ ∀ 𝑎 ∈ ( Base ‘ 𝐶 ) ∀ 𝑏 ∈ ( Base ‘ 𝐶 ) ( 𝑏 ( Hom ‘ 𝐶 ) 𝑎 ) = ( 𝑏 ( Hom ‘ 𝐷 ) 𝑎 ) ) | |
| 22 | 20 21 | bitrdi | ⊢ ( ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) ∧ 𝐶 ∈ Cat ) → ( ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ↔ ∀ 𝑎 ∈ ( Base ‘ 𝐶 ) ∀ 𝑏 ∈ ( Base ‘ 𝐶 ) ( 𝑏 ( Hom ‘ 𝐶 ) 𝑎 ) = ( 𝑏 ( Hom ‘ 𝐷 ) 𝑎 ) ) ) |
| 23 | 15 22 | mpbid | ⊢ ( ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) ∧ 𝐶 ∈ Cat ) → ∀ 𝑎 ∈ ( Base ‘ 𝐶 ) ∀ 𝑏 ∈ ( Base ‘ 𝐶 ) ( 𝑏 ( Hom ‘ 𝐶 ) 𝑎 ) = ( 𝑏 ( Hom ‘ 𝐷 ) 𝑎 ) ) |
| 24 | 23 | r19.21bi | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) ∧ 𝐶 ∈ Cat ) ∧ 𝑎 ∈ ( Base ‘ 𝐶 ) ) → ∀ 𝑏 ∈ ( Base ‘ 𝐶 ) ( 𝑏 ( Hom ‘ 𝐶 ) 𝑎 ) = ( 𝑏 ( Hom ‘ 𝐷 ) 𝑎 ) ) |
| 25 | 24 | r19.21bi | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) ∧ 𝐶 ∈ Cat ) ∧ 𝑎 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑏 ( Hom ‘ 𝐶 ) 𝑎 ) = ( 𝑏 ( Hom ‘ 𝐷 ) 𝑎 ) ) |
| 26 | 25 | eleq2d | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) ∧ 𝐶 ∈ Cat ) ∧ 𝑎 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) → ( ℎ ∈ ( 𝑏 ( Hom ‘ 𝐶 ) 𝑎 ) ↔ ℎ ∈ ( 𝑏 ( Hom ‘ 𝐷 ) 𝑎 ) ) ) |
| 27 | 26 | eubidv | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) ∧ 𝐶 ∈ Cat ) ∧ 𝑎 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) → ( ∃! ℎ ℎ ∈ ( 𝑏 ( Hom ‘ 𝐶 ) 𝑎 ) ↔ ∃! ℎ ℎ ∈ ( 𝑏 ( Hom ‘ 𝐷 ) 𝑎 ) ) ) |
| 28 | 27 | ralbidva | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) ∧ 𝐶 ∈ Cat ) ∧ 𝑎 ∈ ( Base ‘ 𝐶 ) ) → ( ∀ 𝑏 ∈ ( Base ‘ 𝐶 ) ∃! ℎ ℎ ∈ ( 𝑏 ( Hom ‘ 𝐶 ) 𝑎 ) ↔ ∀ 𝑏 ∈ ( Base ‘ 𝐶 ) ∃! ℎ ℎ ∈ ( 𝑏 ( Hom ‘ 𝐷 ) 𝑎 ) ) ) |
| 29 | 28 | pm5.32da | ⊢ ( ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) ∧ 𝐶 ∈ Cat ) → ( ( 𝑎 ∈ ( Base ‘ 𝐶 ) ∧ ∀ 𝑏 ∈ ( Base ‘ 𝐶 ) ∃! ℎ ℎ ∈ ( 𝑏 ( Hom ‘ 𝐶 ) 𝑎 ) ) ↔ ( 𝑎 ∈ ( Base ‘ 𝐶 ) ∧ ∀ 𝑏 ∈ ( Base ‘ 𝐶 ) ∃! ℎ ℎ ∈ ( 𝑏 ( Hom ‘ 𝐷 ) 𝑎 ) ) ) ) |
| 30 | 19 | eleq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) ∧ 𝐶 ∈ Cat ) → ( 𝑎 ∈ ( Base ‘ 𝐶 ) ↔ 𝑎 ∈ ( Base ‘ 𝐷 ) ) ) |
| 31 | 19 | raleqdv | ⊢ ( ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) ∧ 𝐶 ∈ Cat ) → ( ∀ 𝑏 ∈ ( Base ‘ 𝐶 ) ∃! ℎ ℎ ∈ ( 𝑏 ( Hom ‘ 𝐷 ) 𝑎 ) ↔ ∀ 𝑏 ∈ ( Base ‘ 𝐷 ) ∃! ℎ ℎ ∈ ( 𝑏 ( Hom ‘ 𝐷 ) 𝑎 ) ) ) |
| 32 | 30 31 | anbi12d | ⊢ ( ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) ∧ 𝐶 ∈ Cat ) → ( ( 𝑎 ∈ ( Base ‘ 𝐶 ) ∧ ∀ 𝑏 ∈ ( Base ‘ 𝐶 ) ∃! ℎ ℎ ∈ ( 𝑏 ( Hom ‘ 𝐷 ) 𝑎 ) ) ↔ ( 𝑎 ∈ ( Base ‘ 𝐷 ) ∧ ∀ 𝑏 ∈ ( Base ‘ 𝐷 ) ∃! ℎ ℎ ∈ ( 𝑏 ( Hom ‘ 𝐷 ) 𝑎 ) ) ) ) |
| 33 | 29 32 | bitrd | ⊢ ( ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) ∧ 𝐶 ∈ Cat ) → ( ( 𝑎 ∈ ( Base ‘ 𝐶 ) ∧ ∀ 𝑏 ∈ ( Base ‘ 𝐶 ) ∃! ℎ ℎ ∈ ( 𝑏 ( Hom ‘ 𝐶 ) 𝑎 ) ) ↔ ( 𝑎 ∈ ( Base ‘ 𝐷 ) ∧ ∀ 𝑏 ∈ ( Base ‘ 𝐷 ) ∃! ℎ ℎ ∈ ( 𝑏 ( Hom ‘ 𝐷 ) 𝑎 ) ) ) ) |
| 34 | 33 | rabbidva2 | ⊢ ( ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) ∧ 𝐶 ∈ Cat ) → { 𝑎 ∈ ( Base ‘ 𝐶 ) ∣ ∀ 𝑏 ∈ ( Base ‘ 𝐶 ) ∃! ℎ ℎ ∈ ( 𝑏 ( Hom ‘ 𝐶 ) 𝑎 ) } = { 𝑎 ∈ ( Base ‘ 𝐷 ) ∣ ∀ 𝑏 ∈ ( Base ‘ 𝐷 ) ∃! ℎ ℎ ∈ ( 𝑏 ( Hom ‘ 𝐷 ) 𝑎 ) } ) |
| 35 | simpr | ⊢ ( ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) ∧ 𝐶 ∈ Cat ) → 𝐶 ∈ Cat ) | |
| 36 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 37 | 35 36 16 | termoval | ⊢ ( ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) ∧ 𝐶 ∈ Cat ) → ( TermO ‘ 𝐶 ) = { 𝑎 ∈ ( Base ‘ 𝐶 ) ∣ ∀ 𝑏 ∈ ( Base ‘ 𝐶 ) ∃! ℎ ℎ ∈ ( 𝑏 ( Hom ‘ 𝐶 ) 𝑎 ) } ) |
| 38 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) → ( compf ‘ 𝐶 ) = ( compf ‘ 𝐷 ) ) |
| 39 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) → 𝐶 ∈ V ) | |
| 40 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) → 𝐷 ∈ V ) | |
| 41 | 14 38 39 40 | catpropd | ⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) → ( 𝐶 ∈ Cat ↔ 𝐷 ∈ Cat ) ) |
| 42 | 41 | biimpa | ⊢ ( ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) ∧ 𝐶 ∈ Cat ) → 𝐷 ∈ Cat ) |
| 43 | eqid | ⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) | |
| 44 | 42 43 17 | termoval | ⊢ ( ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) ∧ 𝐶 ∈ Cat ) → ( TermO ‘ 𝐷 ) = { 𝑎 ∈ ( Base ‘ 𝐷 ) ∣ ∀ 𝑏 ∈ ( Base ‘ 𝐷 ) ∃! ℎ ℎ ∈ ( 𝑏 ( Hom ‘ 𝐷 ) 𝑎 ) } ) |
| 45 | 34 37 44 | 3eqtr4d | ⊢ ( ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) ∧ 𝐶 ∈ Cat ) → ( TermO ‘ 𝐶 ) = ( TermO ‘ 𝐷 ) ) |
| 46 | 41 | pm5.32i | ⊢ ( ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) ∧ 𝐶 ∈ Cat ) ↔ ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) ∧ 𝐷 ∈ Cat ) ) |
| 47 | 46 45 | sylbir | ⊢ ( ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) ∧ 𝐷 ∈ Cat ) → ( TermO ‘ 𝐶 ) = ( TermO ‘ 𝐷 ) ) |
| 48 | termofn | ⊢ TermO Fn Cat | |
| 49 | 48 | fndmi | ⊢ dom TermO = Cat |
| 50 | 49 | eleq2i | ⊢ ( 𝐶 ∈ dom TermO ↔ 𝐶 ∈ Cat ) |
| 51 | ndmfv | ⊢ ( ¬ 𝐶 ∈ dom TermO → ( TermO ‘ 𝐶 ) = ∅ ) | |
| 52 | 50 51 | sylnbir | ⊢ ( ¬ 𝐶 ∈ Cat → ( TermO ‘ 𝐶 ) = ∅ ) |
| 53 | 52 | ad2antrl | ⊢ ( ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) ∧ ( ¬ 𝐶 ∈ Cat ∧ ¬ 𝐷 ∈ Cat ) ) → ( TermO ‘ 𝐶 ) = ∅ ) |
| 54 | 49 | eleq2i | ⊢ ( 𝐷 ∈ dom TermO ↔ 𝐷 ∈ Cat ) |
| 55 | ndmfv | ⊢ ( ¬ 𝐷 ∈ dom TermO → ( TermO ‘ 𝐷 ) = ∅ ) | |
| 56 | 54 55 | sylnbir | ⊢ ( ¬ 𝐷 ∈ Cat → ( TermO ‘ 𝐷 ) = ∅ ) |
| 57 | 56 | ad2antll | ⊢ ( ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) ∧ ( ¬ 𝐶 ∈ Cat ∧ ¬ 𝐷 ∈ Cat ) ) → ( TermO ‘ 𝐷 ) = ∅ ) |
| 58 | 53 57 | eqtr4d | ⊢ ( ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) ∧ ( ¬ 𝐶 ∈ Cat ∧ ¬ 𝐷 ∈ Cat ) ) → ( TermO ‘ 𝐶 ) = ( TermO ‘ 𝐷 ) ) |
| 59 | 45 47 58 | pm2.61ddan | ⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) → ( TermO ‘ 𝐶 ) = ( TermO ‘ 𝐷 ) ) |
| 60 | 6 13 59 | pm2.61dda | ⊢ ( 𝜑 → ( TermO ‘ 𝐶 ) = ( TermO ‘ 𝐷 ) ) |