This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for termopropd . (Contributed by Zhi Wang, 26-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | initopropd.1 | ⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) | |
| initopropd.2 | ⊢ ( 𝜑 → ( compf ‘ 𝐶 ) = ( compf ‘ 𝐷 ) ) | ||
| initopropdlem.1 | ⊢ ( 𝜑 → ¬ 𝐶 ∈ V ) | ||
| Assertion | termopropdlem | ⊢ ( 𝜑 → ( TermO ‘ 𝐶 ) = ( TermO ‘ 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | initopropd.1 | ⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) | |
| 2 | initopropd.2 | ⊢ ( 𝜑 → ( compf ‘ 𝐶 ) = ( compf ‘ 𝐷 ) ) | |
| 3 | initopropdlem.1 | ⊢ ( 𝜑 → ¬ 𝐶 ∈ V ) | |
| 4 | termofn | ⊢ TermO Fn Cat | |
| 5 | ssv | ⊢ Cat ⊆ V | |
| 6 | simpr | ⊢ ( ( 𝜑 ∧ 𝐷 ∈ Cat ) → 𝐷 ∈ Cat ) | |
| 7 | eqid | ⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) | |
| 8 | eqid | ⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) | |
| 9 | 6 7 8 | termoval | ⊢ ( ( 𝜑 ∧ 𝐷 ∈ Cat ) → ( TermO ‘ 𝐷 ) = { 𝑎 ∈ ( Base ‘ 𝐷 ) ∣ ∀ 𝑏 ∈ ( Base ‘ 𝐷 ) ∃! ℎ ℎ ∈ ( 𝑏 ( Hom ‘ 𝐷 ) 𝑎 ) } ) |
| 10 | fvprc | ⊢ ( ¬ 𝐶 ∈ V → ( Homf ‘ 𝐶 ) = ∅ ) | |
| 11 | 3 10 | syl | ⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = ∅ ) |
| 12 | 1 11 | eqtr3d | ⊢ ( 𝜑 → ( Homf ‘ 𝐷 ) = ∅ ) |
| 13 | homf0 | ⊢ ( ( Base ‘ 𝐷 ) = ∅ ↔ ( Homf ‘ 𝐷 ) = ∅ ) | |
| 14 | 12 13 | sylibr | ⊢ ( 𝜑 → ( Base ‘ 𝐷 ) = ∅ ) |
| 15 | 14 | rabeqdv | ⊢ ( 𝜑 → { 𝑎 ∈ ( Base ‘ 𝐷 ) ∣ ∀ 𝑏 ∈ ( Base ‘ 𝐷 ) ∃! ℎ ℎ ∈ ( 𝑏 ( Hom ‘ 𝐷 ) 𝑎 ) } = { 𝑎 ∈ ∅ ∣ ∀ 𝑏 ∈ ( Base ‘ 𝐷 ) ∃! ℎ ℎ ∈ ( 𝑏 ( Hom ‘ 𝐷 ) 𝑎 ) } ) |
| 16 | rab0 | ⊢ { 𝑎 ∈ ∅ ∣ ∀ 𝑏 ∈ ( Base ‘ 𝐷 ) ∃! ℎ ℎ ∈ ( 𝑏 ( Hom ‘ 𝐷 ) 𝑎 ) } = ∅ | |
| 17 | 15 16 | eqtrdi | ⊢ ( 𝜑 → { 𝑎 ∈ ( Base ‘ 𝐷 ) ∣ ∀ 𝑏 ∈ ( Base ‘ 𝐷 ) ∃! ℎ ℎ ∈ ( 𝑏 ( Hom ‘ 𝐷 ) 𝑎 ) } = ∅ ) |
| 18 | 17 | adantr | ⊢ ( ( 𝜑 ∧ 𝐷 ∈ Cat ) → { 𝑎 ∈ ( Base ‘ 𝐷 ) ∣ ∀ 𝑏 ∈ ( Base ‘ 𝐷 ) ∃! ℎ ℎ ∈ ( 𝑏 ( Hom ‘ 𝐷 ) 𝑎 ) } = ∅ ) |
| 19 | 9 18 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝐷 ∈ Cat ) → ( TermO ‘ 𝐷 ) = ∅ ) |
| 20 | 4 3 5 19 | initopropdlemlem | ⊢ ( 𝜑 → ( TermO ‘ 𝐶 ) = ( TermO ‘ 𝐷 ) ) |