This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elimination of two antecedents. (Contributed by NM, 9-Jul-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pm2.61ddan.1 | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜃 ) | |
| pm2.61ddan.2 | ⊢ ( ( 𝜑 ∧ 𝜒 ) → 𝜃 ) | ||
| pm2.61ddan.3 | ⊢ ( ( 𝜑 ∧ ( ¬ 𝜓 ∧ ¬ 𝜒 ) ) → 𝜃 ) | ||
| Assertion | pm2.61ddan | ⊢ ( 𝜑 → 𝜃 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.61ddan.1 | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜃 ) | |
| 2 | pm2.61ddan.2 | ⊢ ( ( 𝜑 ∧ 𝜒 ) → 𝜃 ) | |
| 3 | pm2.61ddan.3 | ⊢ ( ( 𝜑 ∧ ( ¬ 𝜓 ∧ ¬ 𝜒 ) ) → 𝜃 ) | |
| 4 | 2 | adantlr | ⊢ ( ( ( 𝜑 ∧ ¬ 𝜓 ) ∧ 𝜒 ) → 𝜃 ) |
| 5 | 3 | anassrs | ⊢ ( ( ( 𝜑 ∧ ¬ 𝜓 ) ∧ ¬ 𝜒 ) → 𝜃 ) |
| 6 | 4 5 | pm2.61dan | ⊢ ( ( 𝜑 ∧ ¬ 𝜓 ) → 𝜃 ) |
| 7 | 1 6 | pm2.61dan | ⊢ ( 𝜑 → 𝜃 ) |