This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two structures with the same base, hom-sets and composition operation have the same zero objects. (Contributed by Zhi Wang, 26-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | initopropd.1 | ⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) | |
| initopropd.2 | ⊢ ( 𝜑 → ( compf ‘ 𝐶 ) = ( compf ‘ 𝐷 ) ) | ||
| Assertion | zeroopropd | ⊢ ( 𝜑 → ( ZeroO ‘ 𝐶 ) = ( ZeroO ‘ 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | initopropd.1 | ⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) | |
| 2 | initopropd.2 | ⊢ ( 𝜑 → ( compf ‘ 𝐶 ) = ( compf ‘ 𝐷 ) ) | |
| 3 | 1 | adantr | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ V ) → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) |
| 4 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ V ) → ( compf ‘ 𝐶 ) = ( compf ‘ 𝐷 ) ) |
| 5 | simpr | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ V ) → ¬ 𝐶 ∈ V ) | |
| 6 | 3 4 5 | zeroopropdlem | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ V ) → ( ZeroO ‘ 𝐶 ) = ( ZeroO ‘ 𝐷 ) ) |
| 7 | 1 | adantr | ⊢ ( ( 𝜑 ∧ ¬ 𝐷 ∈ V ) → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) |
| 8 | 7 | eqcomd | ⊢ ( ( 𝜑 ∧ ¬ 𝐷 ∈ V ) → ( Homf ‘ 𝐷 ) = ( Homf ‘ 𝐶 ) ) |
| 9 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ¬ 𝐷 ∈ V ) → ( compf ‘ 𝐶 ) = ( compf ‘ 𝐷 ) ) |
| 10 | 9 | eqcomd | ⊢ ( ( 𝜑 ∧ ¬ 𝐷 ∈ V ) → ( compf ‘ 𝐷 ) = ( compf ‘ 𝐶 ) ) |
| 11 | simpr | ⊢ ( ( 𝜑 ∧ ¬ 𝐷 ∈ V ) → ¬ 𝐷 ∈ V ) | |
| 12 | 8 10 11 | zeroopropdlem | ⊢ ( ( 𝜑 ∧ ¬ 𝐷 ∈ V ) → ( ZeroO ‘ 𝐷 ) = ( ZeroO ‘ 𝐶 ) ) |
| 13 | 12 | eqcomd | ⊢ ( ( 𝜑 ∧ ¬ 𝐷 ∈ V ) → ( ZeroO ‘ 𝐶 ) = ( ZeroO ‘ 𝐷 ) ) |
| 14 | 1 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) ∧ 𝐶 ∈ Cat ) → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) |
| 15 | 2 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) ∧ 𝐶 ∈ Cat ) → ( compf ‘ 𝐶 ) = ( compf ‘ 𝐷 ) ) |
| 16 | 14 15 | initopropd | ⊢ ( ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) ∧ 𝐶 ∈ Cat ) → ( InitO ‘ 𝐶 ) = ( InitO ‘ 𝐷 ) ) |
| 17 | 14 15 | termopropd | ⊢ ( ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) ∧ 𝐶 ∈ Cat ) → ( TermO ‘ 𝐶 ) = ( TermO ‘ 𝐷 ) ) |
| 18 | 16 17 | ineq12d | ⊢ ( ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) ∧ 𝐶 ∈ Cat ) → ( ( InitO ‘ 𝐶 ) ∩ ( TermO ‘ 𝐶 ) ) = ( ( InitO ‘ 𝐷 ) ∩ ( TermO ‘ 𝐷 ) ) ) |
| 19 | simpr | ⊢ ( ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) ∧ 𝐶 ∈ Cat ) → 𝐶 ∈ Cat ) | |
| 20 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 21 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 22 | 19 20 21 | zerooval | ⊢ ( ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) ∧ 𝐶 ∈ Cat ) → ( ZeroO ‘ 𝐶 ) = ( ( InitO ‘ 𝐶 ) ∩ ( TermO ‘ 𝐶 ) ) ) |
| 23 | 1 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) |
| 24 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) → ( compf ‘ 𝐶 ) = ( compf ‘ 𝐷 ) ) |
| 25 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) → 𝐶 ∈ V ) | |
| 26 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) → 𝐷 ∈ V ) | |
| 27 | 23 24 25 26 | catpropd | ⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) → ( 𝐶 ∈ Cat ↔ 𝐷 ∈ Cat ) ) |
| 28 | 27 | biimpa | ⊢ ( ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) ∧ 𝐶 ∈ Cat ) → 𝐷 ∈ Cat ) |
| 29 | eqid | ⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) | |
| 30 | eqid | ⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) | |
| 31 | 28 29 30 | zerooval | ⊢ ( ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) ∧ 𝐶 ∈ Cat ) → ( ZeroO ‘ 𝐷 ) = ( ( InitO ‘ 𝐷 ) ∩ ( TermO ‘ 𝐷 ) ) ) |
| 32 | 18 22 31 | 3eqtr4d | ⊢ ( ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) ∧ 𝐶 ∈ Cat ) → ( ZeroO ‘ 𝐶 ) = ( ZeroO ‘ 𝐷 ) ) |
| 33 | 27 | pm5.32i | ⊢ ( ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) ∧ 𝐶 ∈ Cat ) ↔ ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) ∧ 𝐷 ∈ Cat ) ) |
| 34 | 33 32 | sylbir | ⊢ ( ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) ∧ 𝐷 ∈ Cat ) → ( ZeroO ‘ 𝐶 ) = ( ZeroO ‘ 𝐷 ) ) |
| 35 | zeroofn | ⊢ ZeroO Fn Cat | |
| 36 | 35 | fndmi | ⊢ dom ZeroO = Cat |
| 37 | 36 | eleq2i | ⊢ ( 𝐶 ∈ dom ZeroO ↔ 𝐶 ∈ Cat ) |
| 38 | ndmfv | ⊢ ( ¬ 𝐶 ∈ dom ZeroO → ( ZeroO ‘ 𝐶 ) = ∅ ) | |
| 39 | 37 38 | sylnbir | ⊢ ( ¬ 𝐶 ∈ Cat → ( ZeroO ‘ 𝐶 ) = ∅ ) |
| 40 | 39 | ad2antrl | ⊢ ( ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) ∧ ( ¬ 𝐶 ∈ Cat ∧ ¬ 𝐷 ∈ Cat ) ) → ( ZeroO ‘ 𝐶 ) = ∅ ) |
| 41 | 36 | eleq2i | ⊢ ( 𝐷 ∈ dom ZeroO ↔ 𝐷 ∈ Cat ) |
| 42 | ndmfv | ⊢ ( ¬ 𝐷 ∈ dom ZeroO → ( ZeroO ‘ 𝐷 ) = ∅ ) | |
| 43 | 41 42 | sylnbir | ⊢ ( ¬ 𝐷 ∈ Cat → ( ZeroO ‘ 𝐷 ) = ∅ ) |
| 44 | 43 | ad2antll | ⊢ ( ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) ∧ ( ¬ 𝐶 ∈ Cat ∧ ¬ 𝐷 ∈ Cat ) ) → ( ZeroO ‘ 𝐷 ) = ∅ ) |
| 45 | 40 44 | eqtr4d | ⊢ ( ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) ∧ ( ¬ 𝐶 ∈ Cat ∧ ¬ 𝐷 ∈ Cat ) ) → ( ZeroO ‘ 𝐶 ) = ( ZeroO ‘ 𝐷 ) ) |
| 46 | 32 34 45 | pm2.61ddan | ⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) → ( ZeroO ‘ 𝐶 ) = ( ZeroO ‘ 𝐷 ) ) |
| 47 | 6 13 46 | pm2.61dda | ⊢ ( 𝜑 → ( ZeroO ‘ 𝐶 ) = ( ZeroO ‘ 𝐷 ) ) |