This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two structures with the same base, hom-sets and composition operation have the same terminal objects. (Contributed by Zhi Wang, 26-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | initopropd.1 | |- ( ph -> ( Homf ` C ) = ( Homf ` D ) ) |
|
| initopropd.2 | |- ( ph -> ( comf ` C ) = ( comf ` D ) ) |
||
| Assertion | termopropd | |- ( ph -> ( TermO ` C ) = ( TermO ` D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | initopropd.1 | |- ( ph -> ( Homf ` C ) = ( Homf ` D ) ) |
|
| 2 | initopropd.2 | |- ( ph -> ( comf ` C ) = ( comf ` D ) ) |
|
| 3 | 1 | adantr | |- ( ( ph /\ -. C e. _V ) -> ( Homf ` C ) = ( Homf ` D ) ) |
| 4 | 2 | adantr | |- ( ( ph /\ -. C e. _V ) -> ( comf ` C ) = ( comf ` D ) ) |
| 5 | simpr | |- ( ( ph /\ -. C e. _V ) -> -. C e. _V ) |
|
| 6 | 3 4 5 | termopropdlem | |- ( ( ph /\ -. C e. _V ) -> ( TermO ` C ) = ( TermO ` D ) ) |
| 7 | 1 | adantr | |- ( ( ph /\ -. D e. _V ) -> ( Homf ` C ) = ( Homf ` D ) ) |
| 8 | 7 | eqcomd | |- ( ( ph /\ -. D e. _V ) -> ( Homf ` D ) = ( Homf ` C ) ) |
| 9 | 2 | adantr | |- ( ( ph /\ -. D e. _V ) -> ( comf ` C ) = ( comf ` D ) ) |
| 10 | 9 | eqcomd | |- ( ( ph /\ -. D e. _V ) -> ( comf ` D ) = ( comf ` C ) ) |
| 11 | simpr | |- ( ( ph /\ -. D e. _V ) -> -. D e. _V ) |
|
| 12 | 8 10 11 | termopropdlem | |- ( ( ph /\ -. D e. _V ) -> ( TermO ` D ) = ( TermO ` C ) ) |
| 13 | 12 | eqcomd | |- ( ( ph /\ -. D e. _V ) -> ( TermO ` C ) = ( TermO ` D ) ) |
| 14 | 1 | adantr | |- ( ( ph /\ ( C e. _V /\ D e. _V ) ) -> ( Homf ` C ) = ( Homf ` D ) ) |
| 15 | 14 | adantr | |- ( ( ( ph /\ ( C e. _V /\ D e. _V ) ) /\ C e. Cat ) -> ( Homf ` C ) = ( Homf ` D ) ) |
| 16 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 17 | eqid | |- ( Hom ` D ) = ( Hom ` D ) |
|
| 18 | eqidd | |- ( ( ( ph /\ ( C e. _V /\ D e. _V ) ) /\ C e. Cat ) -> ( Base ` C ) = ( Base ` C ) ) |
|
| 19 | 15 | homfeqbas | |- ( ( ( ph /\ ( C e. _V /\ D e. _V ) ) /\ C e. Cat ) -> ( Base ` C ) = ( Base ` D ) ) |
| 20 | 16 17 18 19 | homfeq | |- ( ( ( ph /\ ( C e. _V /\ D e. _V ) ) /\ C e. Cat ) -> ( ( Homf ` C ) = ( Homf ` D ) <-> A. b e. ( Base ` C ) A. a e. ( Base ` C ) ( b ( Hom ` C ) a ) = ( b ( Hom ` D ) a ) ) ) |
| 21 | ralcom | |- ( A. b e. ( Base ` C ) A. a e. ( Base ` C ) ( b ( Hom ` C ) a ) = ( b ( Hom ` D ) a ) <-> A. a e. ( Base ` C ) A. b e. ( Base ` C ) ( b ( Hom ` C ) a ) = ( b ( Hom ` D ) a ) ) |
|
| 22 | 20 21 | bitrdi | |- ( ( ( ph /\ ( C e. _V /\ D e. _V ) ) /\ C e. Cat ) -> ( ( Homf ` C ) = ( Homf ` D ) <-> A. a e. ( Base ` C ) A. b e. ( Base ` C ) ( b ( Hom ` C ) a ) = ( b ( Hom ` D ) a ) ) ) |
| 23 | 15 22 | mpbid | |- ( ( ( ph /\ ( C e. _V /\ D e. _V ) ) /\ C e. Cat ) -> A. a e. ( Base ` C ) A. b e. ( Base ` C ) ( b ( Hom ` C ) a ) = ( b ( Hom ` D ) a ) ) |
| 24 | 23 | r19.21bi | |- ( ( ( ( ph /\ ( C e. _V /\ D e. _V ) ) /\ C e. Cat ) /\ a e. ( Base ` C ) ) -> A. b e. ( Base ` C ) ( b ( Hom ` C ) a ) = ( b ( Hom ` D ) a ) ) |
| 25 | 24 | r19.21bi | |- ( ( ( ( ( ph /\ ( C e. _V /\ D e. _V ) ) /\ C e. Cat ) /\ a e. ( Base ` C ) ) /\ b e. ( Base ` C ) ) -> ( b ( Hom ` C ) a ) = ( b ( Hom ` D ) a ) ) |
| 26 | 25 | eleq2d | |- ( ( ( ( ( ph /\ ( C e. _V /\ D e. _V ) ) /\ C e. Cat ) /\ a e. ( Base ` C ) ) /\ b e. ( Base ` C ) ) -> ( h e. ( b ( Hom ` C ) a ) <-> h e. ( b ( Hom ` D ) a ) ) ) |
| 27 | 26 | eubidv | |- ( ( ( ( ( ph /\ ( C e. _V /\ D e. _V ) ) /\ C e. Cat ) /\ a e. ( Base ` C ) ) /\ b e. ( Base ` C ) ) -> ( E! h h e. ( b ( Hom ` C ) a ) <-> E! h h e. ( b ( Hom ` D ) a ) ) ) |
| 28 | 27 | ralbidva | |- ( ( ( ( ph /\ ( C e. _V /\ D e. _V ) ) /\ C e. Cat ) /\ a e. ( Base ` C ) ) -> ( A. b e. ( Base ` C ) E! h h e. ( b ( Hom ` C ) a ) <-> A. b e. ( Base ` C ) E! h h e. ( b ( Hom ` D ) a ) ) ) |
| 29 | 28 | pm5.32da | |- ( ( ( ph /\ ( C e. _V /\ D e. _V ) ) /\ C e. Cat ) -> ( ( a e. ( Base ` C ) /\ A. b e. ( Base ` C ) E! h h e. ( b ( Hom ` C ) a ) ) <-> ( a e. ( Base ` C ) /\ A. b e. ( Base ` C ) E! h h e. ( b ( Hom ` D ) a ) ) ) ) |
| 30 | 19 | eleq2d | |- ( ( ( ph /\ ( C e. _V /\ D e. _V ) ) /\ C e. Cat ) -> ( a e. ( Base ` C ) <-> a e. ( Base ` D ) ) ) |
| 31 | 19 | raleqdv | |- ( ( ( ph /\ ( C e. _V /\ D e. _V ) ) /\ C e. Cat ) -> ( A. b e. ( Base ` C ) E! h h e. ( b ( Hom ` D ) a ) <-> A. b e. ( Base ` D ) E! h h e. ( b ( Hom ` D ) a ) ) ) |
| 32 | 30 31 | anbi12d | |- ( ( ( ph /\ ( C e. _V /\ D e. _V ) ) /\ C e. Cat ) -> ( ( a e. ( Base ` C ) /\ A. b e. ( Base ` C ) E! h h e. ( b ( Hom ` D ) a ) ) <-> ( a e. ( Base ` D ) /\ A. b e. ( Base ` D ) E! h h e. ( b ( Hom ` D ) a ) ) ) ) |
| 33 | 29 32 | bitrd | |- ( ( ( ph /\ ( C e. _V /\ D e. _V ) ) /\ C e. Cat ) -> ( ( a e. ( Base ` C ) /\ A. b e. ( Base ` C ) E! h h e. ( b ( Hom ` C ) a ) ) <-> ( a e. ( Base ` D ) /\ A. b e. ( Base ` D ) E! h h e. ( b ( Hom ` D ) a ) ) ) ) |
| 34 | 33 | rabbidva2 | |- ( ( ( ph /\ ( C e. _V /\ D e. _V ) ) /\ C e. Cat ) -> { a e. ( Base ` C ) | A. b e. ( Base ` C ) E! h h e. ( b ( Hom ` C ) a ) } = { a e. ( Base ` D ) | A. b e. ( Base ` D ) E! h h e. ( b ( Hom ` D ) a ) } ) |
| 35 | simpr | |- ( ( ( ph /\ ( C e. _V /\ D e. _V ) ) /\ C e. Cat ) -> C e. Cat ) |
|
| 36 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 37 | 35 36 16 | termoval | |- ( ( ( ph /\ ( C e. _V /\ D e. _V ) ) /\ C e. Cat ) -> ( TermO ` C ) = { a e. ( Base ` C ) | A. b e. ( Base ` C ) E! h h e. ( b ( Hom ` C ) a ) } ) |
| 38 | 2 | adantr | |- ( ( ph /\ ( C e. _V /\ D e. _V ) ) -> ( comf ` C ) = ( comf ` D ) ) |
| 39 | simprl | |- ( ( ph /\ ( C e. _V /\ D e. _V ) ) -> C e. _V ) |
|
| 40 | simprr | |- ( ( ph /\ ( C e. _V /\ D e. _V ) ) -> D e. _V ) |
|
| 41 | 14 38 39 40 | catpropd | |- ( ( ph /\ ( C e. _V /\ D e. _V ) ) -> ( C e. Cat <-> D e. Cat ) ) |
| 42 | 41 | biimpa | |- ( ( ( ph /\ ( C e. _V /\ D e. _V ) ) /\ C e. Cat ) -> D e. Cat ) |
| 43 | eqid | |- ( Base ` D ) = ( Base ` D ) |
|
| 44 | 42 43 17 | termoval | |- ( ( ( ph /\ ( C e. _V /\ D e. _V ) ) /\ C e. Cat ) -> ( TermO ` D ) = { a e. ( Base ` D ) | A. b e. ( Base ` D ) E! h h e. ( b ( Hom ` D ) a ) } ) |
| 45 | 34 37 44 | 3eqtr4d | |- ( ( ( ph /\ ( C e. _V /\ D e. _V ) ) /\ C e. Cat ) -> ( TermO ` C ) = ( TermO ` D ) ) |
| 46 | 41 | pm5.32i | |- ( ( ( ph /\ ( C e. _V /\ D e. _V ) ) /\ C e. Cat ) <-> ( ( ph /\ ( C e. _V /\ D e. _V ) ) /\ D e. Cat ) ) |
| 47 | 46 45 | sylbir | |- ( ( ( ph /\ ( C e. _V /\ D e. _V ) ) /\ D e. Cat ) -> ( TermO ` C ) = ( TermO ` D ) ) |
| 48 | termofn | |- TermO Fn Cat |
|
| 49 | 48 | fndmi | |- dom TermO = Cat |
| 50 | 49 | eleq2i | |- ( C e. dom TermO <-> C e. Cat ) |
| 51 | ndmfv | |- ( -. C e. dom TermO -> ( TermO ` C ) = (/) ) |
|
| 52 | 50 51 | sylnbir | |- ( -. C e. Cat -> ( TermO ` C ) = (/) ) |
| 53 | 52 | ad2antrl | |- ( ( ( ph /\ ( C e. _V /\ D e. _V ) ) /\ ( -. C e. Cat /\ -. D e. Cat ) ) -> ( TermO ` C ) = (/) ) |
| 54 | 49 | eleq2i | |- ( D e. dom TermO <-> D e. Cat ) |
| 55 | ndmfv | |- ( -. D e. dom TermO -> ( TermO ` D ) = (/) ) |
|
| 56 | 54 55 | sylnbir | |- ( -. D e. Cat -> ( TermO ` D ) = (/) ) |
| 57 | 56 | ad2antll | |- ( ( ( ph /\ ( C e. _V /\ D e. _V ) ) /\ ( -. C e. Cat /\ -. D e. Cat ) ) -> ( TermO ` D ) = (/) ) |
| 58 | 53 57 | eqtr4d | |- ( ( ( ph /\ ( C e. _V /\ D e. _V ) ) /\ ( -. C e. Cat /\ -. D e. Cat ) ) -> ( TermO ` C ) = ( TermO ` D ) ) |
| 59 | 45 47 58 | pm2.61ddan | |- ( ( ph /\ ( C e. _V /\ D e. _V ) ) -> ( TermO ` C ) = ( TermO ` D ) ) |
| 60 | 6 13 59 | pm2.61dda | |- ( ph -> ( TermO ` C ) = ( TermO ` D ) ) |