This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for telgsumfzs (induction step). (Contributed by AV, 23-Nov-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | telgsumfzs.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| telgsumfzs.g | ⊢ ( 𝜑 → 𝐺 ∈ Abel ) | ||
| telgsumfzs.m | ⊢ − = ( -g ‘ 𝐺 ) | ||
| Assertion | telgsumfzslem | ⊢ ( ( 𝑦 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) 𝐶 ∈ 𝐵 ) ) → ( ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... 𝑦 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑦 + 1 ) / 𝑘 ⦌ 𝐶 ) → ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... ( 𝑦 + 1 ) ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( ( 𝑦 + 1 ) + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | telgsumfzs.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | telgsumfzs.g | ⊢ ( 𝜑 → 𝐺 ∈ Abel ) | |
| 3 | telgsumfzs.m | ⊢ − = ( -g ‘ 𝐺 ) | |
| 4 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 5 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) 𝐶 ∈ 𝐵 ) → 𝐺 ∈ Abel ) |
| 6 | ablcmn | ⊢ ( 𝐺 ∈ Abel → 𝐺 ∈ CMnd ) | |
| 7 | 5 6 | syl | ⊢ ( ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) 𝐶 ∈ 𝐵 ) → 𝐺 ∈ CMnd ) |
| 8 | 7 | adantl | ⊢ ( ( 𝑦 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) 𝐶 ∈ 𝐵 ) ) → 𝐺 ∈ CMnd ) |
| 9 | fzfid | ⊢ ( ( 𝑦 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) 𝐶 ∈ 𝐵 ) ) → ( 𝑀 ... ( 𝑦 + 1 ) ) ∈ Fin ) | |
| 10 | ablgrp | ⊢ ( 𝐺 ∈ Abel → 𝐺 ∈ Grp ) | |
| 11 | 2 10 | syl | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
| 12 | 11 | ad2antrl | ⊢ ( ( 𝑦 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) 𝐶 ∈ 𝐵 ) ) → 𝐺 ∈ Grp ) |
| 13 | 12 | adantr | ⊢ ( ( ( 𝑦 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) 𝐶 ∈ 𝐵 ) ) ∧ 𝑖 ∈ ( 𝑀 ... ( 𝑦 + 1 ) ) ) → 𝐺 ∈ Grp ) |
| 14 | fzelp1 | ⊢ ( 𝑖 ∈ ( 𝑀 ... ( 𝑦 + 1 ) ) → 𝑖 ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) ) | |
| 15 | simpr | ⊢ ( ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) 𝐶 ∈ 𝐵 ) → ∀ 𝑘 ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) 𝐶 ∈ 𝐵 ) | |
| 16 | 15 | adantl | ⊢ ( ( 𝑦 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) 𝐶 ∈ 𝐵 ) ) → ∀ 𝑘 ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) 𝐶 ∈ 𝐵 ) |
| 17 | rspcsbela | ⊢ ( ( 𝑖 ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) 𝐶 ∈ 𝐵 ) → ⦋ 𝑖 / 𝑘 ⦌ 𝐶 ∈ 𝐵 ) | |
| 18 | 14 16 17 | syl2anr | ⊢ ( ( ( 𝑦 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) 𝐶 ∈ 𝐵 ) ) ∧ 𝑖 ∈ ( 𝑀 ... ( 𝑦 + 1 ) ) ) → ⦋ 𝑖 / 𝑘 ⦌ 𝐶 ∈ 𝐵 ) |
| 19 | fzp1elp1 | ⊢ ( 𝑖 ∈ ( 𝑀 ... ( 𝑦 + 1 ) ) → ( 𝑖 + 1 ) ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) ) | |
| 20 | rspcsbela | ⊢ ( ( ( 𝑖 + 1 ) ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) 𝐶 ∈ 𝐵 ) → ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ∈ 𝐵 ) | |
| 21 | 19 16 20 | syl2anr | ⊢ ( ( ( 𝑦 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) 𝐶 ∈ 𝐵 ) ) ∧ 𝑖 ∈ ( 𝑀 ... ( 𝑦 + 1 ) ) ) → ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ∈ 𝐵 ) |
| 22 | 1 3 | grpsubcl | ⊢ ( ( 𝐺 ∈ Grp ∧ ⦋ 𝑖 / 𝑘 ⦌ 𝐶 ∈ 𝐵 ∧ ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ∈ 𝐵 ) → ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ∈ 𝐵 ) |
| 23 | 13 18 21 22 | syl3anc | ⊢ ( ( ( 𝑦 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) 𝐶 ∈ 𝐵 ) ) ∧ 𝑖 ∈ ( 𝑀 ... ( 𝑦 + 1 ) ) ) → ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ∈ 𝐵 ) |
| 24 | fzp1disj | ⊢ ( ( 𝑀 ... 𝑦 ) ∩ { ( 𝑦 + 1 ) } ) = ∅ | |
| 25 | 24 | a1i | ⊢ ( ( 𝑦 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) 𝐶 ∈ 𝐵 ) ) → ( ( 𝑀 ... 𝑦 ) ∩ { ( 𝑦 + 1 ) } ) = ∅ ) |
| 26 | fzsuc | ⊢ ( 𝑦 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑀 ... ( 𝑦 + 1 ) ) = ( ( 𝑀 ... 𝑦 ) ∪ { ( 𝑦 + 1 ) } ) ) | |
| 27 | 26 | adantr | ⊢ ( ( 𝑦 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) 𝐶 ∈ 𝐵 ) ) → ( 𝑀 ... ( 𝑦 + 1 ) ) = ( ( 𝑀 ... 𝑦 ) ∪ { ( 𝑦 + 1 ) } ) ) |
| 28 | 1 4 8 9 23 25 27 | gsummptfidmsplit | ⊢ ( ( 𝑦 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) 𝐶 ∈ 𝐵 ) ) → ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... ( 𝑦 + 1 ) ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... 𝑦 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) ( +g ‘ 𝐺 ) ( 𝐺 Σg ( 𝑖 ∈ { ( 𝑦 + 1 ) } ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) ) ) |
| 29 | 28 | adantr | ⊢ ( ( ( 𝑦 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) 𝐶 ∈ 𝐵 ) ) ∧ ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... 𝑦 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑦 + 1 ) / 𝑘 ⦌ 𝐶 ) ) → ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... ( 𝑦 + 1 ) ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... 𝑦 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) ( +g ‘ 𝐺 ) ( 𝐺 Σg ( 𝑖 ∈ { ( 𝑦 + 1 ) } ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) ) ) |
| 30 | simpr | ⊢ ( ( ( 𝑦 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) 𝐶 ∈ 𝐵 ) ) ∧ ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... 𝑦 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑦 + 1 ) / 𝑘 ⦌ 𝐶 ) ) → ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... 𝑦 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑦 + 1 ) / 𝑘 ⦌ 𝐶 ) ) | |
| 31 | 11 | grpmndd | ⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
| 32 | 31 | ad2antrl | ⊢ ( ( 𝑦 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) 𝐶 ∈ 𝐵 ) ) → 𝐺 ∈ Mnd ) |
| 33 | ovexd | ⊢ ( ( 𝑦 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) 𝐶 ∈ 𝐵 ) ) → ( 𝑦 + 1 ) ∈ V ) | |
| 34 | peano2uz | ⊢ ( 𝑦 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑦 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 35 | eluzfz2 | ⊢ ( ( 𝑦 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑦 + 1 ) ∈ ( 𝑀 ... ( 𝑦 + 1 ) ) ) | |
| 36 | 34 35 | syl | ⊢ ( 𝑦 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑦 + 1 ) ∈ ( 𝑀 ... ( 𝑦 + 1 ) ) ) |
| 37 | fzelp1 | ⊢ ( ( 𝑦 + 1 ) ∈ ( 𝑀 ... ( 𝑦 + 1 ) ) → ( 𝑦 + 1 ) ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) ) | |
| 38 | 36 37 | syl | ⊢ ( 𝑦 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑦 + 1 ) ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) ) |
| 39 | rspcsbela | ⊢ ( ( ( 𝑦 + 1 ) ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) 𝐶 ∈ 𝐵 ) → ⦋ ( 𝑦 + 1 ) / 𝑘 ⦌ 𝐶 ∈ 𝐵 ) | |
| 40 | 38 15 39 | syl2an | ⊢ ( ( 𝑦 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) 𝐶 ∈ 𝐵 ) ) → ⦋ ( 𝑦 + 1 ) / 𝑘 ⦌ 𝐶 ∈ 𝐵 ) |
| 41 | peano2uz | ⊢ ( ( 𝑦 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑦 + 1 ) + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 42 | 34 41 | syl | ⊢ ( 𝑦 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑦 + 1 ) + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 43 | eluzfz2 | ⊢ ( ( ( 𝑦 + 1 ) + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑦 + 1 ) + 1 ) ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) ) | |
| 44 | 42 43 | syl | ⊢ ( 𝑦 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑦 + 1 ) + 1 ) ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) ) |
| 45 | rspcsbela | ⊢ ( ( ( ( 𝑦 + 1 ) + 1 ) ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) 𝐶 ∈ 𝐵 ) → ⦋ ( ( 𝑦 + 1 ) + 1 ) / 𝑘 ⦌ 𝐶 ∈ 𝐵 ) | |
| 46 | 44 15 45 | syl2an | ⊢ ( ( 𝑦 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) 𝐶 ∈ 𝐵 ) ) → ⦋ ( ( 𝑦 + 1 ) + 1 ) / 𝑘 ⦌ 𝐶 ∈ 𝐵 ) |
| 47 | 1 3 | grpsubcl | ⊢ ( ( 𝐺 ∈ Grp ∧ ⦋ ( 𝑦 + 1 ) / 𝑘 ⦌ 𝐶 ∈ 𝐵 ∧ ⦋ ( ( 𝑦 + 1 ) + 1 ) / 𝑘 ⦌ 𝐶 ∈ 𝐵 ) → ( ⦋ ( 𝑦 + 1 ) / 𝑘 ⦌ 𝐶 − ⦋ ( ( 𝑦 + 1 ) + 1 ) / 𝑘 ⦌ 𝐶 ) ∈ 𝐵 ) |
| 48 | 12 40 46 47 | syl3anc | ⊢ ( ( 𝑦 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) 𝐶 ∈ 𝐵 ) ) → ( ⦋ ( 𝑦 + 1 ) / 𝑘 ⦌ 𝐶 − ⦋ ( ( 𝑦 + 1 ) + 1 ) / 𝑘 ⦌ 𝐶 ) ∈ 𝐵 ) |
| 49 | csbeq1 | ⊢ ( 𝑖 = ( 𝑦 + 1 ) → ⦋ 𝑖 / 𝑘 ⦌ 𝐶 = ⦋ ( 𝑦 + 1 ) / 𝑘 ⦌ 𝐶 ) | |
| 50 | oveq1 | ⊢ ( 𝑖 = ( 𝑦 + 1 ) → ( 𝑖 + 1 ) = ( ( 𝑦 + 1 ) + 1 ) ) | |
| 51 | 50 | csbeq1d | ⊢ ( 𝑖 = ( 𝑦 + 1 ) → ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 = ⦋ ( ( 𝑦 + 1 ) + 1 ) / 𝑘 ⦌ 𝐶 ) |
| 52 | 49 51 | oveq12d | ⊢ ( 𝑖 = ( 𝑦 + 1 ) → ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) = ( ⦋ ( 𝑦 + 1 ) / 𝑘 ⦌ 𝐶 − ⦋ ( ( 𝑦 + 1 ) + 1 ) / 𝑘 ⦌ 𝐶 ) ) |
| 53 | 52 | adantl | ⊢ ( ( ( 𝑦 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) 𝐶 ∈ 𝐵 ) ) ∧ 𝑖 = ( 𝑦 + 1 ) ) → ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) = ( ⦋ ( 𝑦 + 1 ) / 𝑘 ⦌ 𝐶 − ⦋ ( ( 𝑦 + 1 ) + 1 ) / 𝑘 ⦌ 𝐶 ) ) |
| 54 | 1 32 33 48 53 | gsumsnd | ⊢ ( ( 𝑦 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) 𝐶 ∈ 𝐵 ) ) → ( 𝐺 Σg ( 𝑖 ∈ { ( 𝑦 + 1 ) } ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( ⦋ ( 𝑦 + 1 ) / 𝑘 ⦌ 𝐶 − ⦋ ( ( 𝑦 + 1 ) + 1 ) / 𝑘 ⦌ 𝐶 ) ) |
| 55 | 54 | adantr | ⊢ ( ( ( 𝑦 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) 𝐶 ∈ 𝐵 ) ) ∧ ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... 𝑦 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑦 + 1 ) / 𝑘 ⦌ 𝐶 ) ) → ( 𝐺 Σg ( 𝑖 ∈ { ( 𝑦 + 1 ) } ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( ⦋ ( 𝑦 + 1 ) / 𝑘 ⦌ 𝐶 − ⦋ ( ( 𝑦 + 1 ) + 1 ) / 𝑘 ⦌ 𝐶 ) ) |
| 56 | 30 55 | oveq12d | ⊢ ( ( ( 𝑦 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) 𝐶 ∈ 𝐵 ) ) ∧ ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... 𝑦 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑦 + 1 ) / 𝑘 ⦌ 𝐶 ) ) → ( ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... 𝑦 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) ( +g ‘ 𝐺 ) ( 𝐺 Σg ( 𝑖 ∈ { ( 𝑦 + 1 ) } ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) ) = ( ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑦 + 1 ) / 𝑘 ⦌ 𝐶 ) ( +g ‘ 𝐺 ) ( ⦋ ( 𝑦 + 1 ) / 𝑘 ⦌ 𝐶 − ⦋ ( ( 𝑦 + 1 ) + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) |
| 57 | eluzfz1 | ⊢ ( ( ( 𝑦 + 1 ) + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) ) | |
| 58 | 42 57 | syl | ⊢ ( 𝑦 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) ) |
| 59 | rspcsbela | ⊢ ( ( 𝑀 ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) 𝐶 ∈ 𝐵 ) → ⦋ 𝑀 / 𝑘 ⦌ 𝐶 ∈ 𝐵 ) | |
| 60 | 58 15 59 | syl2an | ⊢ ( ( 𝑦 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) 𝐶 ∈ 𝐵 ) ) → ⦋ 𝑀 / 𝑘 ⦌ 𝐶 ∈ 𝐵 ) |
| 61 | 1 4 3 | grpnpncan | ⊢ ( ( 𝐺 ∈ Grp ∧ ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 ∈ 𝐵 ∧ ⦋ ( 𝑦 + 1 ) / 𝑘 ⦌ 𝐶 ∈ 𝐵 ∧ ⦋ ( ( 𝑦 + 1 ) + 1 ) / 𝑘 ⦌ 𝐶 ∈ 𝐵 ) ) → ( ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑦 + 1 ) / 𝑘 ⦌ 𝐶 ) ( +g ‘ 𝐺 ) ( ⦋ ( 𝑦 + 1 ) / 𝑘 ⦌ 𝐶 − ⦋ ( ( 𝑦 + 1 ) + 1 ) / 𝑘 ⦌ 𝐶 ) ) = ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( ( 𝑦 + 1 ) + 1 ) / 𝑘 ⦌ 𝐶 ) ) |
| 62 | 12 60 40 46 61 | syl13anc | ⊢ ( ( 𝑦 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) 𝐶 ∈ 𝐵 ) ) → ( ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑦 + 1 ) / 𝑘 ⦌ 𝐶 ) ( +g ‘ 𝐺 ) ( ⦋ ( 𝑦 + 1 ) / 𝑘 ⦌ 𝐶 − ⦋ ( ( 𝑦 + 1 ) + 1 ) / 𝑘 ⦌ 𝐶 ) ) = ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( ( 𝑦 + 1 ) + 1 ) / 𝑘 ⦌ 𝐶 ) ) |
| 63 | 62 | adantr | ⊢ ( ( ( 𝑦 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) 𝐶 ∈ 𝐵 ) ) ∧ ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... 𝑦 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑦 + 1 ) / 𝑘 ⦌ 𝐶 ) ) → ( ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑦 + 1 ) / 𝑘 ⦌ 𝐶 ) ( +g ‘ 𝐺 ) ( ⦋ ( 𝑦 + 1 ) / 𝑘 ⦌ 𝐶 − ⦋ ( ( 𝑦 + 1 ) + 1 ) / 𝑘 ⦌ 𝐶 ) ) = ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( ( 𝑦 + 1 ) + 1 ) / 𝑘 ⦌ 𝐶 ) ) |
| 64 | 29 56 63 | 3eqtrd | ⊢ ( ( ( 𝑦 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) 𝐶 ∈ 𝐵 ) ) ∧ ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... 𝑦 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑦 + 1 ) / 𝑘 ⦌ 𝐶 ) ) → ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... ( 𝑦 + 1 ) ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( ( 𝑦 + 1 ) + 1 ) / 𝑘 ⦌ 𝐶 ) ) |
| 65 | 64 | ex | ⊢ ( ( 𝑦 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) 𝐶 ∈ 𝐵 ) ) → ( ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... 𝑦 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑦 + 1 ) / 𝑘 ⦌ 𝐶 ) → ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... ( 𝑦 + 1 ) ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( ( 𝑦 + 1 ) + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) |