This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem ablcmn

Description: An Abelian group is a commutative monoid. (Contributed by Mario Carneiro, 6-Jan-2015)

Ref Expression
Assertion ablcmn ( 𝐺 ∈ Abel → 𝐺 ∈ CMnd )

Proof

Step Hyp Ref Expression
1 isabl ( 𝐺 ∈ Abel ↔ ( 𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd ) )
2 1 simprbi ( 𝐺 ∈ Abel → 𝐺 ∈ CMnd )