This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Telescoping group sum ranging over a finite set of sequential integers, using explicit substitution. (Contributed by AV, 23-Nov-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | telgsumfzs.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| telgsumfzs.g | ⊢ ( 𝜑 → 𝐺 ∈ Abel ) | ||
| telgsumfzs.m | ⊢ − = ( -g ‘ 𝐺 ) | ||
| telgsumfzs.n | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | ||
| telgsumfzs.f | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) 𝐶 ∈ 𝐵 ) | ||
| Assertion | telgsumfzs | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... 𝑁 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑁 + 1 ) / 𝑘 ⦌ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | telgsumfzs.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | telgsumfzs.g | ⊢ ( 𝜑 → 𝐺 ∈ Abel ) | |
| 3 | telgsumfzs.m | ⊢ − = ( -g ‘ 𝐺 ) | |
| 4 | telgsumfzs.n | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 5 | telgsumfzs.f | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) 𝐶 ∈ 𝐵 ) | |
| 6 | oveq1 | ⊢ ( 𝑥 = 𝑀 → ( 𝑥 + 1 ) = ( 𝑀 + 1 ) ) | |
| 7 | 6 | oveq2d | ⊢ ( 𝑥 = 𝑀 → ( 𝑀 ... ( 𝑥 + 1 ) ) = ( 𝑀 ... ( 𝑀 + 1 ) ) ) |
| 8 | 7 | raleqdv | ⊢ ( 𝑥 = 𝑀 → ( ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑥 + 1 ) ) 𝐶 ∈ 𝐵 ↔ ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑀 + 1 ) ) 𝐶 ∈ 𝐵 ) ) |
| 9 | 8 | anbi2d | ⊢ ( 𝑥 = 𝑀 → ( ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑥 + 1 ) ) 𝐶 ∈ 𝐵 ) ↔ ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑀 + 1 ) ) 𝐶 ∈ 𝐵 ) ) ) |
| 10 | oveq2 | ⊢ ( 𝑥 = 𝑀 → ( 𝑀 ... 𝑥 ) = ( 𝑀 ... 𝑀 ) ) | |
| 11 | 10 | mpteq1d | ⊢ ( 𝑥 = 𝑀 → ( 𝑖 ∈ ( 𝑀 ... 𝑥 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) = ( 𝑖 ∈ ( 𝑀 ... 𝑀 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) |
| 12 | 11 | oveq2d | ⊢ ( 𝑥 = 𝑀 → ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... 𝑥 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... 𝑀 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) ) |
| 13 | 6 | csbeq1d | ⊢ ( 𝑥 = 𝑀 → ⦋ ( 𝑥 + 1 ) / 𝑘 ⦌ 𝐶 = ⦋ ( 𝑀 + 1 ) / 𝑘 ⦌ 𝐶 ) |
| 14 | 13 | oveq2d | ⊢ ( 𝑥 = 𝑀 → ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑥 + 1 ) / 𝑘 ⦌ 𝐶 ) = ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑀 + 1 ) / 𝑘 ⦌ 𝐶 ) ) |
| 15 | 12 14 | eqeq12d | ⊢ ( 𝑥 = 𝑀 → ( ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... 𝑥 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑥 + 1 ) / 𝑘 ⦌ 𝐶 ) ↔ ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... 𝑀 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑀 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) |
| 16 | 9 15 | imbi12d | ⊢ ( 𝑥 = 𝑀 → ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑥 + 1 ) ) 𝐶 ∈ 𝐵 ) → ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... 𝑥 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑥 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ↔ ( ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑀 + 1 ) ) 𝐶 ∈ 𝐵 ) → ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... 𝑀 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑀 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) ) |
| 17 | oveq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 + 1 ) = ( 𝑦 + 1 ) ) | |
| 18 | 17 | oveq2d | ⊢ ( 𝑥 = 𝑦 → ( 𝑀 ... ( 𝑥 + 1 ) ) = ( 𝑀 ... ( 𝑦 + 1 ) ) ) |
| 19 | 18 | raleqdv | ⊢ ( 𝑥 = 𝑦 → ( ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑥 + 1 ) ) 𝐶 ∈ 𝐵 ↔ ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑦 + 1 ) ) 𝐶 ∈ 𝐵 ) ) |
| 20 | 19 | anbi2d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑥 + 1 ) ) 𝐶 ∈ 𝐵 ) ↔ ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑦 + 1 ) ) 𝐶 ∈ 𝐵 ) ) ) |
| 21 | oveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝑀 ... 𝑥 ) = ( 𝑀 ... 𝑦 ) ) | |
| 22 | 21 | mpteq1d | ⊢ ( 𝑥 = 𝑦 → ( 𝑖 ∈ ( 𝑀 ... 𝑥 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) = ( 𝑖 ∈ ( 𝑀 ... 𝑦 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) |
| 23 | 22 | oveq2d | ⊢ ( 𝑥 = 𝑦 → ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... 𝑥 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... 𝑦 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) ) |
| 24 | 17 | csbeq1d | ⊢ ( 𝑥 = 𝑦 → ⦋ ( 𝑥 + 1 ) / 𝑘 ⦌ 𝐶 = ⦋ ( 𝑦 + 1 ) / 𝑘 ⦌ 𝐶 ) |
| 25 | 24 | oveq2d | ⊢ ( 𝑥 = 𝑦 → ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑥 + 1 ) / 𝑘 ⦌ 𝐶 ) = ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑦 + 1 ) / 𝑘 ⦌ 𝐶 ) ) |
| 26 | 23 25 | eqeq12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... 𝑥 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑥 + 1 ) / 𝑘 ⦌ 𝐶 ) ↔ ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... 𝑦 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑦 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) |
| 27 | 20 26 | imbi12d | ⊢ ( 𝑥 = 𝑦 → ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑥 + 1 ) ) 𝐶 ∈ 𝐵 ) → ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... 𝑥 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑥 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ↔ ( ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑦 + 1 ) ) 𝐶 ∈ 𝐵 ) → ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... 𝑦 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑦 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) ) |
| 28 | oveq1 | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝑥 + 1 ) = ( ( 𝑦 + 1 ) + 1 ) ) | |
| 29 | 28 | oveq2d | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝑀 ... ( 𝑥 + 1 ) ) = ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) ) |
| 30 | 29 | raleqdv | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑥 + 1 ) ) 𝐶 ∈ 𝐵 ↔ ∀ 𝑘 ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) 𝐶 ∈ 𝐵 ) ) |
| 31 | 30 | anbi2d | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑥 + 1 ) ) 𝐶 ∈ 𝐵 ) ↔ ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) 𝐶 ∈ 𝐵 ) ) ) |
| 32 | oveq2 | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝑀 ... 𝑥 ) = ( 𝑀 ... ( 𝑦 + 1 ) ) ) | |
| 33 | 32 | mpteq1d | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝑖 ∈ ( 𝑀 ... 𝑥 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) = ( 𝑖 ∈ ( 𝑀 ... ( 𝑦 + 1 ) ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) |
| 34 | 33 | oveq2d | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... 𝑥 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... ( 𝑦 + 1 ) ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) ) |
| 35 | 28 | csbeq1d | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ⦋ ( 𝑥 + 1 ) / 𝑘 ⦌ 𝐶 = ⦋ ( ( 𝑦 + 1 ) + 1 ) / 𝑘 ⦌ 𝐶 ) |
| 36 | 35 | oveq2d | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑥 + 1 ) / 𝑘 ⦌ 𝐶 ) = ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( ( 𝑦 + 1 ) + 1 ) / 𝑘 ⦌ 𝐶 ) ) |
| 37 | 34 36 | eqeq12d | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... 𝑥 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑥 + 1 ) / 𝑘 ⦌ 𝐶 ) ↔ ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... ( 𝑦 + 1 ) ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( ( 𝑦 + 1 ) + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) |
| 38 | 31 37 | imbi12d | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑥 + 1 ) ) 𝐶 ∈ 𝐵 ) → ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... 𝑥 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑥 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ↔ ( ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) 𝐶 ∈ 𝐵 ) → ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... ( 𝑦 + 1 ) ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( ( 𝑦 + 1 ) + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) ) |
| 39 | oveq1 | ⊢ ( 𝑥 = 𝑁 → ( 𝑥 + 1 ) = ( 𝑁 + 1 ) ) | |
| 40 | 39 | oveq2d | ⊢ ( 𝑥 = 𝑁 → ( 𝑀 ... ( 𝑥 + 1 ) ) = ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
| 41 | 40 | raleqdv | ⊢ ( 𝑥 = 𝑁 → ( ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑥 + 1 ) ) 𝐶 ∈ 𝐵 ↔ ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) 𝐶 ∈ 𝐵 ) ) |
| 42 | 41 | anbi2d | ⊢ ( 𝑥 = 𝑁 → ( ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑥 + 1 ) ) 𝐶 ∈ 𝐵 ) ↔ ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) 𝐶 ∈ 𝐵 ) ) ) |
| 43 | oveq2 | ⊢ ( 𝑥 = 𝑁 → ( 𝑀 ... 𝑥 ) = ( 𝑀 ... 𝑁 ) ) | |
| 44 | 43 | mpteq1d | ⊢ ( 𝑥 = 𝑁 → ( 𝑖 ∈ ( 𝑀 ... 𝑥 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) = ( 𝑖 ∈ ( 𝑀 ... 𝑁 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) |
| 45 | 44 | oveq2d | ⊢ ( 𝑥 = 𝑁 → ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... 𝑥 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... 𝑁 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) ) |
| 46 | 39 | csbeq1d | ⊢ ( 𝑥 = 𝑁 → ⦋ ( 𝑥 + 1 ) / 𝑘 ⦌ 𝐶 = ⦋ ( 𝑁 + 1 ) / 𝑘 ⦌ 𝐶 ) |
| 47 | 46 | oveq2d | ⊢ ( 𝑥 = 𝑁 → ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑥 + 1 ) / 𝑘 ⦌ 𝐶 ) = ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑁 + 1 ) / 𝑘 ⦌ 𝐶 ) ) |
| 48 | 45 47 | eqeq12d | ⊢ ( 𝑥 = 𝑁 → ( ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... 𝑥 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑥 + 1 ) / 𝑘 ⦌ 𝐶 ) ↔ ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... 𝑁 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑁 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) |
| 49 | 42 48 | imbi12d | ⊢ ( 𝑥 = 𝑁 → ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑥 + 1 ) ) 𝐶 ∈ 𝐵 ) → ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... 𝑥 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑥 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ↔ ( ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) 𝐶 ∈ 𝐵 ) → ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... 𝑁 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑁 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) ) |
| 50 | eluzel2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) | |
| 51 | 4 50 | syl | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 52 | 51 | adantr | ⊢ ( ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑀 + 1 ) ) 𝐶 ∈ 𝐵 ) → 𝑀 ∈ ℤ ) |
| 53 | fzsn | ⊢ ( 𝑀 ∈ ℤ → ( 𝑀 ... 𝑀 ) = { 𝑀 } ) | |
| 54 | 52 53 | syl | ⊢ ( ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑀 + 1 ) ) 𝐶 ∈ 𝐵 ) → ( 𝑀 ... 𝑀 ) = { 𝑀 } ) |
| 55 | 54 | mpteq1d | ⊢ ( ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑀 + 1 ) ) 𝐶 ∈ 𝐵 ) → ( 𝑖 ∈ ( 𝑀 ... 𝑀 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) = ( 𝑖 ∈ { 𝑀 } ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) |
| 56 | 55 | oveq2d | ⊢ ( ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑀 + 1 ) ) 𝐶 ∈ 𝐵 ) → ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... 𝑀 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( 𝐺 Σg ( 𝑖 ∈ { 𝑀 } ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) ) |
| 57 | ablgrp | ⊢ ( 𝐺 ∈ Abel → 𝐺 ∈ Grp ) | |
| 58 | 2 57 | syl | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
| 59 | 58 | grpmndd | ⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
| 60 | 59 | adantr | ⊢ ( ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑀 + 1 ) ) 𝐶 ∈ 𝐵 ) → 𝐺 ∈ Mnd ) |
| 61 | 58 | adantr | ⊢ ( ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑀 + 1 ) ) 𝐶 ∈ 𝐵 ) → 𝐺 ∈ Grp ) |
| 62 | uzid | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 63 | 52 62 | syl | ⊢ ( ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑀 + 1 ) ) 𝐶 ∈ 𝐵 ) → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 64 | peano2uz | ⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑀 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 65 | 63 64 | syl | ⊢ ( ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑀 + 1 ) ) 𝐶 ∈ 𝐵 ) → ( 𝑀 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 66 | eluzfz1 | ⊢ ( ( 𝑀 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ( 𝑀 ... ( 𝑀 + 1 ) ) ) | |
| 67 | 65 66 | syl | ⊢ ( ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑀 + 1 ) ) 𝐶 ∈ 𝐵 ) → 𝑀 ∈ ( 𝑀 ... ( 𝑀 + 1 ) ) ) |
| 68 | rspcsbela | ⊢ ( ( 𝑀 ∈ ( 𝑀 ... ( 𝑀 + 1 ) ) ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑀 + 1 ) ) 𝐶 ∈ 𝐵 ) → ⦋ 𝑀 / 𝑘 ⦌ 𝐶 ∈ 𝐵 ) | |
| 69 | 67 68 | sylancom | ⊢ ( ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑀 + 1 ) ) 𝐶 ∈ 𝐵 ) → ⦋ 𝑀 / 𝑘 ⦌ 𝐶 ∈ 𝐵 ) |
| 70 | eluzfz2 | ⊢ ( ( 𝑀 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑀 + 1 ) ∈ ( 𝑀 ... ( 𝑀 + 1 ) ) ) | |
| 71 | 65 70 | syl | ⊢ ( ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑀 + 1 ) ) 𝐶 ∈ 𝐵 ) → ( 𝑀 + 1 ) ∈ ( 𝑀 ... ( 𝑀 + 1 ) ) ) |
| 72 | rspcsbela | ⊢ ( ( ( 𝑀 + 1 ) ∈ ( 𝑀 ... ( 𝑀 + 1 ) ) ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑀 + 1 ) ) 𝐶 ∈ 𝐵 ) → ⦋ ( 𝑀 + 1 ) / 𝑘 ⦌ 𝐶 ∈ 𝐵 ) | |
| 73 | 71 72 | sylancom | ⊢ ( ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑀 + 1 ) ) 𝐶 ∈ 𝐵 ) → ⦋ ( 𝑀 + 1 ) / 𝑘 ⦌ 𝐶 ∈ 𝐵 ) |
| 74 | 1 3 | grpsubcl | ⊢ ( ( 𝐺 ∈ Grp ∧ ⦋ 𝑀 / 𝑘 ⦌ 𝐶 ∈ 𝐵 ∧ ⦋ ( 𝑀 + 1 ) / 𝑘 ⦌ 𝐶 ∈ 𝐵 ) → ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑀 + 1 ) / 𝑘 ⦌ 𝐶 ) ∈ 𝐵 ) |
| 75 | 61 69 73 74 | syl3anc | ⊢ ( ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑀 + 1 ) ) 𝐶 ∈ 𝐵 ) → ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑀 + 1 ) / 𝑘 ⦌ 𝐶 ) ∈ 𝐵 ) |
| 76 | csbeq1 | ⊢ ( 𝑖 = 𝑀 → ⦋ 𝑖 / 𝑘 ⦌ 𝐶 = ⦋ 𝑀 / 𝑘 ⦌ 𝐶 ) | |
| 77 | oveq1 | ⊢ ( 𝑖 = 𝑀 → ( 𝑖 + 1 ) = ( 𝑀 + 1 ) ) | |
| 78 | 77 | csbeq1d | ⊢ ( 𝑖 = 𝑀 → ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 = ⦋ ( 𝑀 + 1 ) / 𝑘 ⦌ 𝐶 ) |
| 79 | 76 78 | oveq12d | ⊢ ( 𝑖 = 𝑀 → ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) = ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑀 + 1 ) / 𝑘 ⦌ 𝐶 ) ) |
| 80 | 79 | adantl | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑀 + 1 ) ) 𝐶 ∈ 𝐵 ) ∧ 𝑖 = 𝑀 ) → ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) = ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑀 + 1 ) / 𝑘 ⦌ 𝐶 ) ) |
| 81 | 1 60 52 75 80 | gsumsnd | ⊢ ( ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑀 + 1 ) ) 𝐶 ∈ 𝐵 ) → ( 𝐺 Σg ( 𝑖 ∈ { 𝑀 } ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑀 + 1 ) / 𝑘 ⦌ 𝐶 ) ) |
| 82 | 56 81 | eqtrd | ⊢ ( ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑀 + 1 ) ) 𝐶 ∈ 𝐵 ) → ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... 𝑀 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑀 + 1 ) / 𝑘 ⦌ 𝐶 ) ) |
| 83 | 1 2 3 | telgsumfzslem | ⊢ ( ( 𝑦 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) 𝐶 ∈ 𝐵 ) ) → ( ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... 𝑦 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑦 + 1 ) / 𝑘 ⦌ 𝐶 ) → ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... ( 𝑦 + 1 ) ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( ( 𝑦 + 1 ) + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) |
| 84 | 83 | ex | ⊢ ( 𝑦 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) 𝐶 ∈ 𝐵 ) → ( ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... 𝑦 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑦 + 1 ) / 𝑘 ⦌ 𝐶 ) → ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... ( 𝑦 + 1 ) ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( ( 𝑦 + 1 ) + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) ) |
| 85 | eluzelz | ⊢ ( 𝑦 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑦 ∈ ℤ ) | |
| 86 | 85 | peano2zd | ⊢ ( 𝑦 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑦 + 1 ) ∈ ℤ ) |
| 87 | 86 | peano2zd | ⊢ ( 𝑦 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑦 + 1 ) + 1 ) ∈ ℤ ) |
| 88 | peano2z | ⊢ ( 𝑦 ∈ ℤ → ( 𝑦 + 1 ) ∈ ℤ ) | |
| 89 | 88 | zred | ⊢ ( 𝑦 ∈ ℤ → ( 𝑦 + 1 ) ∈ ℝ ) |
| 90 | 85 89 | syl | ⊢ ( 𝑦 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑦 + 1 ) ∈ ℝ ) |
| 91 | 90 | lep1d | ⊢ ( 𝑦 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑦 + 1 ) ≤ ( ( 𝑦 + 1 ) + 1 ) ) |
| 92 | eluz2 | ⊢ ( ( ( 𝑦 + 1 ) + 1 ) ∈ ( ℤ≥ ‘ ( 𝑦 + 1 ) ) ↔ ( ( 𝑦 + 1 ) ∈ ℤ ∧ ( ( 𝑦 + 1 ) + 1 ) ∈ ℤ ∧ ( 𝑦 + 1 ) ≤ ( ( 𝑦 + 1 ) + 1 ) ) ) | |
| 93 | 86 87 91 92 | syl3anbrc | ⊢ ( 𝑦 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑦 + 1 ) + 1 ) ∈ ( ℤ≥ ‘ ( 𝑦 + 1 ) ) ) |
| 94 | fzss2 | ⊢ ( ( ( 𝑦 + 1 ) + 1 ) ∈ ( ℤ≥ ‘ ( 𝑦 + 1 ) ) → ( 𝑀 ... ( 𝑦 + 1 ) ) ⊆ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) ) | |
| 95 | 93 94 | syl | ⊢ ( 𝑦 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑀 ... ( 𝑦 + 1 ) ) ⊆ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) ) |
| 96 | ssralv | ⊢ ( ( 𝑀 ... ( 𝑦 + 1 ) ) ⊆ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) → ( ∀ 𝑘 ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) 𝐶 ∈ 𝐵 → ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑦 + 1 ) ) 𝐶 ∈ 𝐵 ) ) | |
| 97 | 95 96 | syl | ⊢ ( 𝑦 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ∀ 𝑘 ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) 𝐶 ∈ 𝐵 → ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑦 + 1 ) ) 𝐶 ∈ 𝐵 ) ) |
| 98 | 97 | adantld | ⊢ ( 𝑦 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) 𝐶 ∈ 𝐵 ) → ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑦 + 1 ) ) 𝐶 ∈ 𝐵 ) ) |
| 99 | 84 98 | a2and | ⊢ ( 𝑦 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑦 + 1 ) ) 𝐶 ∈ 𝐵 ) → ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... 𝑦 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑦 + 1 ) / 𝑘 ⦌ 𝐶 ) ) → ( ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) 𝐶 ∈ 𝐵 ) → ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... ( 𝑦 + 1 ) ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( ( 𝑦 + 1 ) + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) ) |
| 100 | 16 27 38 49 82 99 | uzind4i | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) 𝐶 ∈ 𝐵 ) → ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... 𝑁 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑁 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) |
| 101 | 100 | expd | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝜑 → ( ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) 𝐶 ∈ 𝐵 → ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... 𝑁 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑁 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) ) |
| 102 | 4 101 | mpcom | ⊢ ( 𝜑 → ( ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) 𝐶 ∈ 𝐵 → ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... 𝑁 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑁 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) |
| 103 | 5 102 | mpd | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... 𝑁 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑁 + 1 ) / 𝑘 ⦌ 𝐶 ) ) |