This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The hyperbolic tangent of a real number is upper bounded by 1 . (Contributed by Mario Carneiro, 4-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tanhlt1 | ⊢ ( 𝐴 ∈ ℝ → ( ( tan ‘ ( i · 𝐴 ) ) / i ) < 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-icn | ⊢ i ∈ ℂ | |
| 2 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
| 3 | mulcl | ⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( i · 𝐴 ) ∈ ℂ ) | |
| 4 | 1 2 3 | sylancr | ⊢ ( 𝐴 ∈ ℝ → ( i · 𝐴 ) ∈ ℂ ) |
| 5 | rpcoshcl | ⊢ ( 𝐴 ∈ ℝ → ( cos ‘ ( i · 𝐴 ) ) ∈ ℝ+ ) | |
| 6 | 5 | rpne0d | ⊢ ( 𝐴 ∈ ℝ → ( cos ‘ ( i · 𝐴 ) ) ≠ 0 ) |
| 7 | tanval | ⊢ ( ( ( i · 𝐴 ) ∈ ℂ ∧ ( cos ‘ ( i · 𝐴 ) ) ≠ 0 ) → ( tan ‘ ( i · 𝐴 ) ) = ( ( sin ‘ ( i · 𝐴 ) ) / ( cos ‘ ( i · 𝐴 ) ) ) ) | |
| 8 | 4 6 7 | syl2anc | ⊢ ( 𝐴 ∈ ℝ → ( tan ‘ ( i · 𝐴 ) ) = ( ( sin ‘ ( i · 𝐴 ) ) / ( cos ‘ ( i · 𝐴 ) ) ) ) |
| 9 | 8 | oveq1d | ⊢ ( 𝐴 ∈ ℝ → ( ( tan ‘ ( i · 𝐴 ) ) / i ) = ( ( ( sin ‘ ( i · 𝐴 ) ) / ( cos ‘ ( i · 𝐴 ) ) ) / i ) ) |
| 10 | 4 | sincld | ⊢ ( 𝐴 ∈ ℝ → ( sin ‘ ( i · 𝐴 ) ) ∈ ℂ ) |
| 11 | recoshcl | ⊢ ( 𝐴 ∈ ℝ → ( cos ‘ ( i · 𝐴 ) ) ∈ ℝ ) | |
| 12 | 11 | recnd | ⊢ ( 𝐴 ∈ ℝ → ( cos ‘ ( i · 𝐴 ) ) ∈ ℂ ) |
| 13 | 1 | a1i | ⊢ ( 𝐴 ∈ ℝ → i ∈ ℂ ) |
| 14 | ine0 | ⊢ i ≠ 0 | |
| 15 | 14 | a1i | ⊢ ( 𝐴 ∈ ℝ → i ≠ 0 ) |
| 16 | 10 12 13 6 15 | divdiv32d | ⊢ ( 𝐴 ∈ ℝ → ( ( ( sin ‘ ( i · 𝐴 ) ) / ( cos ‘ ( i · 𝐴 ) ) ) / i ) = ( ( ( sin ‘ ( i · 𝐴 ) ) / i ) / ( cos ‘ ( i · 𝐴 ) ) ) ) |
| 17 | sinhval | ⊢ ( 𝐴 ∈ ℂ → ( ( sin ‘ ( i · 𝐴 ) ) / i ) = ( ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) / 2 ) ) | |
| 18 | 2 17 | syl | ⊢ ( 𝐴 ∈ ℝ → ( ( sin ‘ ( i · 𝐴 ) ) / i ) = ( ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) / 2 ) ) |
| 19 | coshval | ⊢ ( 𝐴 ∈ ℂ → ( cos ‘ ( i · 𝐴 ) ) = ( ( ( exp ‘ 𝐴 ) + ( exp ‘ - 𝐴 ) ) / 2 ) ) | |
| 20 | 2 19 | syl | ⊢ ( 𝐴 ∈ ℝ → ( cos ‘ ( i · 𝐴 ) ) = ( ( ( exp ‘ 𝐴 ) + ( exp ‘ - 𝐴 ) ) / 2 ) ) |
| 21 | 18 20 | oveq12d | ⊢ ( 𝐴 ∈ ℝ → ( ( ( sin ‘ ( i · 𝐴 ) ) / i ) / ( cos ‘ ( i · 𝐴 ) ) ) = ( ( ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) / 2 ) / ( ( ( exp ‘ 𝐴 ) + ( exp ‘ - 𝐴 ) ) / 2 ) ) ) |
| 22 | 9 16 21 | 3eqtrd | ⊢ ( 𝐴 ∈ ℝ → ( ( tan ‘ ( i · 𝐴 ) ) / i ) = ( ( ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) / 2 ) / ( ( ( exp ‘ 𝐴 ) + ( exp ‘ - 𝐴 ) ) / 2 ) ) ) |
| 23 | reefcl | ⊢ ( 𝐴 ∈ ℝ → ( exp ‘ 𝐴 ) ∈ ℝ ) | |
| 24 | renegcl | ⊢ ( 𝐴 ∈ ℝ → - 𝐴 ∈ ℝ ) | |
| 25 | 24 | reefcld | ⊢ ( 𝐴 ∈ ℝ → ( exp ‘ - 𝐴 ) ∈ ℝ ) |
| 26 | 23 25 | resubcld | ⊢ ( 𝐴 ∈ ℝ → ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) ∈ ℝ ) |
| 27 | 26 | recnd | ⊢ ( 𝐴 ∈ ℝ → ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) ∈ ℂ ) |
| 28 | 23 25 | readdcld | ⊢ ( 𝐴 ∈ ℝ → ( ( exp ‘ 𝐴 ) + ( exp ‘ - 𝐴 ) ) ∈ ℝ ) |
| 29 | 28 | recnd | ⊢ ( 𝐴 ∈ ℝ → ( ( exp ‘ 𝐴 ) + ( exp ‘ - 𝐴 ) ) ∈ ℂ ) |
| 30 | 2cnd | ⊢ ( 𝐴 ∈ ℝ → 2 ∈ ℂ ) | |
| 31 | 20 6 | eqnetrrd | ⊢ ( 𝐴 ∈ ℝ → ( ( ( exp ‘ 𝐴 ) + ( exp ‘ - 𝐴 ) ) / 2 ) ≠ 0 ) |
| 32 | 2ne0 | ⊢ 2 ≠ 0 | |
| 33 | 32 | a1i | ⊢ ( 𝐴 ∈ ℝ → 2 ≠ 0 ) |
| 34 | 29 30 33 | divne0bd | ⊢ ( 𝐴 ∈ ℝ → ( ( ( exp ‘ 𝐴 ) + ( exp ‘ - 𝐴 ) ) ≠ 0 ↔ ( ( ( exp ‘ 𝐴 ) + ( exp ‘ - 𝐴 ) ) / 2 ) ≠ 0 ) ) |
| 35 | 31 34 | mpbird | ⊢ ( 𝐴 ∈ ℝ → ( ( exp ‘ 𝐴 ) + ( exp ‘ - 𝐴 ) ) ≠ 0 ) |
| 36 | 27 29 30 35 33 | divcan7d | ⊢ ( 𝐴 ∈ ℝ → ( ( ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) / 2 ) / ( ( ( exp ‘ 𝐴 ) + ( exp ‘ - 𝐴 ) ) / 2 ) ) = ( ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) / ( ( exp ‘ 𝐴 ) + ( exp ‘ - 𝐴 ) ) ) ) |
| 37 | 22 36 | eqtrd | ⊢ ( 𝐴 ∈ ℝ → ( ( tan ‘ ( i · 𝐴 ) ) / i ) = ( ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) / ( ( exp ‘ 𝐴 ) + ( exp ‘ - 𝐴 ) ) ) ) |
| 38 | 24 | rpefcld | ⊢ ( 𝐴 ∈ ℝ → ( exp ‘ - 𝐴 ) ∈ ℝ+ ) |
| 39 | 23 38 | ltsubrpd | ⊢ ( 𝐴 ∈ ℝ → ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) < ( exp ‘ 𝐴 ) ) |
| 40 | 23 38 | ltaddrpd | ⊢ ( 𝐴 ∈ ℝ → ( exp ‘ 𝐴 ) < ( ( exp ‘ 𝐴 ) + ( exp ‘ - 𝐴 ) ) ) |
| 41 | 26 23 28 39 40 | lttrd | ⊢ ( 𝐴 ∈ ℝ → ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) < ( ( exp ‘ 𝐴 ) + ( exp ‘ - 𝐴 ) ) ) |
| 42 | 29 | mulridd | ⊢ ( 𝐴 ∈ ℝ → ( ( ( exp ‘ 𝐴 ) + ( exp ‘ - 𝐴 ) ) · 1 ) = ( ( exp ‘ 𝐴 ) + ( exp ‘ - 𝐴 ) ) ) |
| 43 | 41 42 | breqtrrd | ⊢ ( 𝐴 ∈ ℝ → ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) < ( ( ( exp ‘ 𝐴 ) + ( exp ‘ - 𝐴 ) ) · 1 ) ) |
| 44 | 1red | ⊢ ( 𝐴 ∈ ℝ → 1 ∈ ℝ ) | |
| 45 | efgt0 | ⊢ ( 𝐴 ∈ ℝ → 0 < ( exp ‘ 𝐴 ) ) | |
| 46 | efgt0 | ⊢ ( - 𝐴 ∈ ℝ → 0 < ( exp ‘ - 𝐴 ) ) | |
| 47 | 24 46 | syl | ⊢ ( 𝐴 ∈ ℝ → 0 < ( exp ‘ - 𝐴 ) ) |
| 48 | 23 25 45 47 | addgt0d | ⊢ ( 𝐴 ∈ ℝ → 0 < ( ( exp ‘ 𝐴 ) + ( exp ‘ - 𝐴 ) ) ) |
| 49 | ltdivmul | ⊢ ( ( ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) ∈ ℝ ∧ 1 ∈ ℝ ∧ ( ( ( exp ‘ 𝐴 ) + ( exp ‘ - 𝐴 ) ) ∈ ℝ ∧ 0 < ( ( exp ‘ 𝐴 ) + ( exp ‘ - 𝐴 ) ) ) ) → ( ( ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) / ( ( exp ‘ 𝐴 ) + ( exp ‘ - 𝐴 ) ) ) < 1 ↔ ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) < ( ( ( exp ‘ 𝐴 ) + ( exp ‘ - 𝐴 ) ) · 1 ) ) ) | |
| 50 | 26 44 28 48 49 | syl112anc | ⊢ ( 𝐴 ∈ ℝ → ( ( ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) / ( ( exp ‘ 𝐴 ) + ( exp ‘ - 𝐴 ) ) ) < 1 ↔ ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) < ( ( ( exp ‘ 𝐴 ) + ( exp ‘ - 𝐴 ) ) · 1 ) ) ) |
| 51 | 43 50 | mpbird | ⊢ ( 𝐴 ∈ ℝ → ( ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) / ( ( exp ‘ 𝐴 ) + ( exp ‘ - 𝐴 ) ) ) < 1 ) |
| 52 | 37 51 | eqbrtrd | ⊢ ( 𝐴 ∈ ℝ → ( ( tan ‘ ( i · 𝐴 ) ) / i ) < 1 ) |