This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The hyperbolic tangent of a real number is bounded by 1 . (Contributed by Mario Carneiro, 4-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tanhbnd | |- ( A e. RR -> ( ( tan ` ( _i x. A ) ) / _i ) e. ( -u 1 (,) 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | retanhcl | |- ( A e. RR -> ( ( tan ` ( _i x. A ) ) / _i ) e. RR ) |
|
| 2 | ax-icn | |- _i e. CC |
|
| 3 | recn | |- ( A e. RR -> A e. CC ) |
|
| 4 | mulcl | |- ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) |
|
| 5 | 2 3 4 | sylancr | |- ( A e. RR -> ( _i x. A ) e. CC ) |
| 6 | rpcoshcl | |- ( A e. RR -> ( cos ` ( _i x. A ) ) e. RR+ ) |
|
| 7 | 6 | rpne0d | |- ( A e. RR -> ( cos ` ( _i x. A ) ) =/= 0 ) |
| 8 | 5 7 | tancld | |- ( A e. RR -> ( tan ` ( _i x. A ) ) e. CC ) |
| 9 | 2 | a1i | |- ( A e. RR -> _i e. CC ) |
| 10 | ine0 | |- _i =/= 0 |
|
| 11 | 10 | a1i | |- ( A e. RR -> _i =/= 0 ) |
| 12 | 8 9 11 | divnegd | |- ( A e. RR -> -u ( ( tan ` ( _i x. A ) ) / _i ) = ( -u ( tan ` ( _i x. A ) ) / _i ) ) |
| 13 | mulneg2 | |- ( ( _i e. CC /\ A e. CC ) -> ( _i x. -u A ) = -u ( _i x. A ) ) |
|
| 14 | 2 3 13 | sylancr | |- ( A e. RR -> ( _i x. -u A ) = -u ( _i x. A ) ) |
| 15 | 14 | fveq2d | |- ( A e. RR -> ( tan ` ( _i x. -u A ) ) = ( tan ` -u ( _i x. A ) ) ) |
| 16 | tanneg | |- ( ( ( _i x. A ) e. CC /\ ( cos ` ( _i x. A ) ) =/= 0 ) -> ( tan ` -u ( _i x. A ) ) = -u ( tan ` ( _i x. A ) ) ) |
|
| 17 | 5 7 16 | syl2anc | |- ( A e. RR -> ( tan ` -u ( _i x. A ) ) = -u ( tan ` ( _i x. A ) ) ) |
| 18 | 15 17 | eqtrd | |- ( A e. RR -> ( tan ` ( _i x. -u A ) ) = -u ( tan ` ( _i x. A ) ) ) |
| 19 | 18 | oveq1d | |- ( A e. RR -> ( ( tan ` ( _i x. -u A ) ) / _i ) = ( -u ( tan ` ( _i x. A ) ) / _i ) ) |
| 20 | 12 19 | eqtr4d | |- ( A e. RR -> -u ( ( tan ` ( _i x. A ) ) / _i ) = ( ( tan ` ( _i x. -u A ) ) / _i ) ) |
| 21 | renegcl | |- ( A e. RR -> -u A e. RR ) |
|
| 22 | tanhlt1 | |- ( -u A e. RR -> ( ( tan ` ( _i x. -u A ) ) / _i ) < 1 ) |
|
| 23 | 21 22 | syl | |- ( A e. RR -> ( ( tan ` ( _i x. -u A ) ) / _i ) < 1 ) |
| 24 | 20 23 | eqbrtrd | |- ( A e. RR -> -u ( ( tan ` ( _i x. A ) ) / _i ) < 1 ) |
| 25 | 1re | |- 1 e. RR |
|
| 26 | ltnegcon1 | |- ( ( ( ( tan ` ( _i x. A ) ) / _i ) e. RR /\ 1 e. RR ) -> ( -u ( ( tan ` ( _i x. A ) ) / _i ) < 1 <-> -u 1 < ( ( tan ` ( _i x. A ) ) / _i ) ) ) |
|
| 27 | 1 25 26 | sylancl | |- ( A e. RR -> ( -u ( ( tan ` ( _i x. A ) ) / _i ) < 1 <-> -u 1 < ( ( tan ` ( _i x. A ) ) / _i ) ) ) |
| 28 | 24 27 | mpbid | |- ( A e. RR -> -u 1 < ( ( tan ` ( _i x. A ) ) / _i ) ) |
| 29 | tanhlt1 | |- ( A e. RR -> ( ( tan ` ( _i x. A ) ) / _i ) < 1 ) |
|
| 30 | neg1rr | |- -u 1 e. RR |
|
| 31 | 30 | rexri | |- -u 1 e. RR* |
| 32 | 25 | rexri | |- 1 e. RR* |
| 33 | elioo2 | |- ( ( -u 1 e. RR* /\ 1 e. RR* ) -> ( ( ( tan ` ( _i x. A ) ) / _i ) e. ( -u 1 (,) 1 ) <-> ( ( ( tan ` ( _i x. A ) ) / _i ) e. RR /\ -u 1 < ( ( tan ` ( _i x. A ) ) / _i ) /\ ( ( tan ` ( _i x. A ) ) / _i ) < 1 ) ) ) |
|
| 34 | 31 32 33 | mp2an | |- ( ( ( tan ` ( _i x. A ) ) / _i ) e. ( -u 1 (,) 1 ) <-> ( ( ( tan ` ( _i x. A ) ) / _i ) e. RR /\ -u 1 < ( ( tan ` ( _i x. A ) ) / _i ) /\ ( ( tan ` ( _i x. A ) ) / _i ) < 1 ) ) |
| 35 | 1 28 29 34 | syl3anbrc | |- ( A e. RR -> ( ( tan ` ( _i x. A ) ) / _i ) e. ( -u 1 (,) 1 ) ) |