This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A real number times the imaginary unit is real only if the number is 0. (Contributed by NM, 28-May-1999) (Revised by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rimul | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( i · 𝐴 ) ∈ ℝ ) → 𝐴 = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inelr | ⊢ ¬ i ∈ ℝ | |
| 2 | ax-icn | ⊢ i ∈ ℂ | |
| 3 | 2 | a1i | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ ( i · 𝐴 ) ∈ ℝ ) ∧ 𝐴 ≠ 0 ) → i ∈ ℂ ) |
| 4 | simpll | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ ( i · 𝐴 ) ∈ ℝ ) ∧ 𝐴 ≠ 0 ) → 𝐴 ∈ ℝ ) | |
| 5 | 4 | recnd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ ( i · 𝐴 ) ∈ ℝ ) ∧ 𝐴 ≠ 0 ) → 𝐴 ∈ ℂ ) |
| 6 | simpr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ ( i · 𝐴 ) ∈ ℝ ) ∧ 𝐴 ≠ 0 ) → 𝐴 ≠ 0 ) | |
| 7 | 3 5 6 | divcan4d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ ( i · 𝐴 ) ∈ ℝ ) ∧ 𝐴 ≠ 0 ) → ( ( i · 𝐴 ) / 𝐴 ) = i ) |
| 8 | simplr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ ( i · 𝐴 ) ∈ ℝ ) ∧ 𝐴 ≠ 0 ) → ( i · 𝐴 ) ∈ ℝ ) | |
| 9 | 8 4 6 | redivcld | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ ( i · 𝐴 ) ∈ ℝ ) ∧ 𝐴 ≠ 0 ) → ( ( i · 𝐴 ) / 𝐴 ) ∈ ℝ ) |
| 10 | 7 9 | eqeltrrd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ ( i · 𝐴 ) ∈ ℝ ) ∧ 𝐴 ≠ 0 ) → i ∈ ℝ ) |
| 11 | 10 | ex | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( i · 𝐴 ) ∈ ℝ ) → ( 𝐴 ≠ 0 → i ∈ ℝ ) ) |
| 12 | 11 | necon1bd | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( i · 𝐴 ) ∈ ℝ ) → ( ¬ i ∈ ℝ → 𝐴 = 0 ) ) |
| 13 | 1 12 | mpi | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( i · 𝐴 ) ∈ ℝ ) → 𝐴 = 0 ) |