This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The symmetric group on a set A is a submonoid of the monoid of endofunctions on A . Alternate proof based on issubmndb and not on injsubmefmnd and sursubmefmnd . (Contributed by AV, 18-Feb-2024) (Revised by AV, 30-Mar-2024) (New usage is discouraged.) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | symgsubmefmndALT.m | ⊢ 𝑀 = ( EndoFMnd ‘ 𝐴 ) | |
| symgsubmefmndALT.g | ⊢ 𝐺 = ( SymGrp ‘ 𝐴 ) | ||
| symgsubmefmndALT.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | ||
| Assertion | symgsubmefmndALT | ⊢ ( 𝐴 ∈ 𝑉 → 𝐵 ∈ ( SubMnd ‘ 𝑀 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | symgsubmefmndALT.m | ⊢ 𝑀 = ( EndoFMnd ‘ 𝐴 ) | |
| 2 | symgsubmefmndALT.g | ⊢ 𝐺 = ( SymGrp ‘ 𝐴 ) | |
| 3 | symgsubmefmndALT.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 4 | 1 | efmndmnd | ⊢ ( 𝐴 ∈ 𝑉 → 𝑀 ∈ Mnd ) |
| 5 | 2 3 1 | symgressbas | ⊢ 𝐺 = ( 𝑀 ↾s 𝐵 ) |
| 6 | 2 | symggrp | ⊢ ( 𝐴 ∈ 𝑉 → 𝐺 ∈ Grp ) |
| 7 | grpmnd | ⊢ ( 𝐺 ∈ Grp → 𝐺 ∈ Mnd ) | |
| 8 | 6 7 | syl | ⊢ ( 𝐴 ∈ 𝑉 → 𝐺 ∈ Mnd ) |
| 9 | 5 8 | eqeltrrid | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑀 ↾s 𝐵 ) ∈ Mnd ) |
| 10 | 2 | idresperm | ⊢ ( 𝐴 ∈ 𝑉 → ( I ↾ 𝐴 ) ∈ ( Base ‘ 𝐺 ) ) |
| 11 | 1 | efmndid | ⊢ ( 𝐴 ∈ 𝑉 → ( I ↾ 𝐴 ) = ( 0g ‘ 𝑀 ) ) |
| 12 | 3 | eqcomi | ⊢ ( Base ‘ 𝐺 ) = 𝐵 |
| 13 | 12 | a1i | ⊢ ( 𝐴 ∈ 𝑉 → ( Base ‘ 𝐺 ) = 𝐵 ) |
| 14 | 10 11 13 | 3eltr3d | ⊢ ( 𝐴 ∈ 𝑉 → ( 0g ‘ 𝑀 ) ∈ 𝐵 ) |
| 15 | 2 3 | symgbasmap | ⊢ ( 𝑓 ∈ 𝐵 → 𝑓 ∈ ( 𝐴 ↑m 𝐴 ) ) |
| 16 | 15 | ssriv | ⊢ 𝐵 ⊆ ( 𝐴 ↑m 𝐴 ) |
| 17 | eqid | ⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) | |
| 18 | 1 17 | efmndbas | ⊢ ( Base ‘ 𝑀 ) = ( 𝐴 ↑m 𝐴 ) |
| 19 | 16 18 | sseqtrri | ⊢ 𝐵 ⊆ ( Base ‘ 𝑀 ) |
| 20 | 14 19 | jctil | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐵 ⊆ ( Base ‘ 𝑀 ) ∧ ( 0g ‘ 𝑀 ) ∈ 𝐵 ) ) |
| 21 | eqid | ⊢ ( 0g ‘ 𝑀 ) = ( 0g ‘ 𝑀 ) | |
| 22 | 17 21 | issubmndb | ⊢ ( 𝐵 ∈ ( SubMnd ‘ 𝑀 ) ↔ ( ( 𝑀 ∈ Mnd ∧ ( 𝑀 ↾s 𝐵 ) ∈ Mnd ) ∧ ( 𝐵 ⊆ ( Base ‘ 𝑀 ) ∧ ( 0g ‘ 𝑀 ) ∈ 𝐵 ) ) ) |
| 23 | 4 9 20 22 | syl21anbrc | ⊢ ( 𝐴 ∈ 𝑉 → 𝐵 ∈ ( SubMnd ‘ 𝑀 ) ) |