This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of injective endofunctions on a set A is a submonoid of the monoid of endofunctions on A . (Contributed by AV, 25-Feb-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | sursubmefmnd.m | ⊢ 𝑀 = ( EndoFMnd ‘ 𝐴 ) | |
| Assertion | injsubmefmnd | ⊢ ( 𝐴 ∈ 𝑉 → { ℎ ∣ ℎ : 𝐴 –1-1→ 𝐴 } ∈ ( SubMnd ‘ 𝑀 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sursubmefmnd.m | ⊢ 𝑀 = ( EndoFMnd ‘ 𝐴 ) | |
| 2 | vex | ⊢ 𝑥 ∈ V | |
| 3 | f1eq1 | ⊢ ( ℎ = 𝑥 → ( ℎ : 𝐴 –1-1→ 𝐴 ↔ 𝑥 : 𝐴 –1-1→ 𝐴 ) ) | |
| 4 | 2 3 | elab | ⊢ ( 𝑥 ∈ { ℎ ∣ ℎ : 𝐴 –1-1→ 𝐴 } ↔ 𝑥 : 𝐴 –1-1→ 𝐴 ) |
| 5 | f1f | ⊢ ( 𝑥 : 𝐴 –1-1→ 𝐴 → 𝑥 : 𝐴 ⟶ 𝐴 ) | |
| 6 | eqid | ⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) | |
| 7 | 1 6 | elefmndbas | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 ∈ ( Base ‘ 𝑀 ) ↔ 𝑥 : 𝐴 ⟶ 𝐴 ) ) |
| 8 | 5 7 | imbitrrid | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 : 𝐴 –1-1→ 𝐴 → 𝑥 ∈ ( Base ‘ 𝑀 ) ) ) |
| 9 | 4 8 | biimtrid | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 ∈ { ℎ ∣ ℎ : 𝐴 –1-1→ 𝐴 } → 𝑥 ∈ ( Base ‘ 𝑀 ) ) ) |
| 10 | 9 | ssrdv | ⊢ ( 𝐴 ∈ 𝑉 → { ℎ ∣ ℎ : 𝐴 –1-1→ 𝐴 } ⊆ ( Base ‘ 𝑀 ) ) |
| 11 | 1 | efmndid | ⊢ ( 𝐴 ∈ 𝑉 → ( I ↾ 𝐴 ) = ( 0g ‘ 𝑀 ) ) |
| 12 | resiexg | ⊢ ( 𝐴 ∈ 𝑉 → ( I ↾ 𝐴 ) ∈ V ) | |
| 13 | f1oi | ⊢ ( I ↾ 𝐴 ) : 𝐴 –1-1-onto→ 𝐴 | |
| 14 | f1of1 | ⊢ ( ( I ↾ 𝐴 ) : 𝐴 –1-1-onto→ 𝐴 → ( I ↾ 𝐴 ) : 𝐴 –1-1→ 𝐴 ) | |
| 15 | 13 14 | mp1i | ⊢ ( 𝐴 ∈ 𝑉 → ( I ↾ 𝐴 ) : 𝐴 –1-1→ 𝐴 ) |
| 16 | f1eq1 | ⊢ ( ℎ = ( I ↾ 𝐴 ) → ( ℎ : 𝐴 –1-1→ 𝐴 ↔ ( I ↾ 𝐴 ) : 𝐴 –1-1→ 𝐴 ) ) | |
| 17 | 12 15 16 | elabd | ⊢ ( 𝐴 ∈ 𝑉 → ( I ↾ 𝐴 ) ∈ { ℎ ∣ ℎ : 𝐴 –1-1→ 𝐴 } ) |
| 18 | 11 17 | eqeltrrd | ⊢ ( 𝐴 ∈ 𝑉 → ( 0g ‘ 𝑀 ) ∈ { ℎ ∣ ℎ : 𝐴 –1-1→ 𝐴 } ) |
| 19 | vex | ⊢ 𝑦 ∈ V | |
| 20 | f1eq1 | ⊢ ( ℎ = 𝑦 → ( ℎ : 𝐴 –1-1→ 𝐴 ↔ 𝑦 : 𝐴 –1-1→ 𝐴 ) ) | |
| 21 | 19 20 | elab | ⊢ ( 𝑦 ∈ { ℎ ∣ ℎ : 𝐴 –1-1→ 𝐴 } ↔ 𝑦 : 𝐴 –1-1→ 𝐴 ) |
| 22 | 4 21 | anbi12i | ⊢ ( ( 𝑥 ∈ { ℎ ∣ ℎ : 𝐴 –1-1→ 𝐴 } ∧ 𝑦 ∈ { ℎ ∣ ℎ : 𝐴 –1-1→ 𝐴 } ) ↔ ( 𝑥 : 𝐴 –1-1→ 𝐴 ∧ 𝑦 : 𝐴 –1-1→ 𝐴 ) ) |
| 23 | f1co | ⊢ ( ( 𝑥 : 𝐴 –1-1→ 𝐴 ∧ 𝑦 : 𝐴 –1-1→ 𝐴 ) → ( 𝑥 ∘ 𝑦 ) : 𝐴 –1-1→ 𝐴 ) | |
| 24 | 23 | adantl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑥 : 𝐴 –1-1→ 𝐴 ∧ 𝑦 : 𝐴 –1-1→ 𝐴 ) ) → ( 𝑥 ∘ 𝑦 ) : 𝐴 –1-1→ 𝐴 ) |
| 25 | f1f | ⊢ ( 𝑦 : 𝐴 –1-1→ 𝐴 → 𝑦 : 𝐴 ⟶ 𝐴 ) | |
| 26 | 5 25 | anim12i | ⊢ ( ( 𝑥 : 𝐴 –1-1→ 𝐴 ∧ 𝑦 : 𝐴 –1-1→ 𝐴 ) → ( 𝑥 : 𝐴 ⟶ 𝐴 ∧ 𝑦 : 𝐴 ⟶ 𝐴 ) ) |
| 27 | 1 6 | elefmndbas | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑦 ∈ ( Base ‘ 𝑀 ) ↔ 𝑦 : 𝐴 ⟶ 𝐴 ) ) |
| 28 | 7 27 | anbi12d | ⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ↔ ( 𝑥 : 𝐴 ⟶ 𝐴 ∧ 𝑦 : 𝐴 ⟶ 𝐴 ) ) ) |
| 29 | 26 28 | imbitrrid | ⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝑥 : 𝐴 –1-1→ 𝐴 ∧ 𝑦 : 𝐴 –1-1→ 𝐴 ) → ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) ) |
| 30 | 29 | imp | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑥 : 𝐴 –1-1→ 𝐴 ∧ 𝑦 : 𝐴 –1-1→ 𝐴 ) ) → ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) |
| 31 | eqid | ⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) | |
| 32 | 1 6 31 | efmndov | ⊢ ( ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) → ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑥 ∘ 𝑦 ) ) |
| 33 | 30 32 | syl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑥 : 𝐴 –1-1→ 𝐴 ∧ 𝑦 : 𝐴 –1-1→ 𝐴 ) ) → ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑥 ∘ 𝑦 ) ) |
| 34 | 33 | eleq1d | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑥 : 𝐴 –1-1→ 𝐴 ∧ 𝑦 : 𝐴 –1-1→ 𝐴 ) ) → ( ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ { ℎ ∣ ℎ : 𝐴 –1-1→ 𝐴 } ↔ ( 𝑥 ∘ 𝑦 ) ∈ { ℎ ∣ ℎ : 𝐴 –1-1→ 𝐴 } ) ) |
| 35 | 2 19 | coex | ⊢ ( 𝑥 ∘ 𝑦 ) ∈ V |
| 36 | f1eq1 | ⊢ ( ℎ = ( 𝑥 ∘ 𝑦 ) → ( ℎ : 𝐴 –1-1→ 𝐴 ↔ ( 𝑥 ∘ 𝑦 ) : 𝐴 –1-1→ 𝐴 ) ) | |
| 37 | 35 36 | elab | ⊢ ( ( 𝑥 ∘ 𝑦 ) ∈ { ℎ ∣ ℎ : 𝐴 –1-1→ 𝐴 } ↔ ( 𝑥 ∘ 𝑦 ) : 𝐴 –1-1→ 𝐴 ) |
| 38 | 34 37 | bitrdi | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑥 : 𝐴 –1-1→ 𝐴 ∧ 𝑦 : 𝐴 –1-1→ 𝐴 ) ) → ( ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ { ℎ ∣ ℎ : 𝐴 –1-1→ 𝐴 } ↔ ( 𝑥 ∘ 𝑦 ) : 𝐴 –1-1→ 𝐴 ) ) |
| 39 | 24 38 | mpbird | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑥 : 𝐴 –1-1→ 𝐴 ∧ 𝑦 : 𝐴 –1-1→ 𝐴 ) ) → ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ { ℎ ∣ ℎ : 𝐴 –1-1→ 𝐴 } ) |
| 40 | 39 | ex | ⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝑥 : 𝐴 –1-1→ 𝐴 ∧ 𝑦 : 𝐴 –1-1→ 𝐴 ) → ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ { ℎ ∣ ℎ : 𝐴 –1-1→ 𝐴 } ) ) |
| 41 | 22 40 | biimtrid | ⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝑥 ∈ { ℎ ∣ ℎ : 𝐴 –1-1→ 𝐴 } ∧ 𝑦 ∈ { ℎ ∣ ℎ : 𝐴 –1-1→ 𝐴 } ) → ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ { ℎ ∣ ℎ : 𝐴 –1-1→ 𝐴 } ) ) |
| 42 | 41 | ralrimivv | ⊢ ( 𝐴 ∈ 𝑉 → ∀ 𝑥 ∈ { ℎ ∣ ℎ : 𝐴 –1-1→ 𝐴 } ∀ 𝑦 ∈ { ℎ ∣ ℎ : 𝐴 –1-1→ 𝐴 } ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ { ℎ ∣ ℎ : 𝐴 –1-1→ 𝐴 } ) |
| 43 | 1 | efmndmnd | ⊢ ( 𝐴 ∈ 𝑉 → 𝑀 ∈ Mnd ) |
| 44 | eqid | ⊢ ( 0g ‘ 𝑀 ) = ( 0g ‘ 𝑀 ) | |
| 45 | 6 44 31 | issubm | ⊢ ( 𝑀 ∈ Mnd → ( { ℎ ∣ ℎ : 𝐴 –1-1→ 𝐴 } ∈ ( SubMnd ‘ 𝑀 ) ↔ ( { ℎ ∣ ℎ : 𝐴 –1-1→ 𝐴 } ⊆ ( Base ‘ 𝑀 ) ∧ ( 0g ‘ 𝑀 ) ∈ { ℎ ∣ ℎ : 𝐴 –1-1→ 𝐴 } ∧ ∀ 𝑥 ∈ { ℎ ∣ ℎ : 𝐴 –1-1→ 𝐴 } ∀ 𝑦 ∈ { ℎ ∣ ℎ : 𝐴 –1-1→ 𝐴 } ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ { ℎ ∣ ℎ : 𝐴 –1-1→ 𝐴 } ) ) ) |
| 46 | 43 45 | syl | ⊢ ( 𝐴 ∈ 𝑉 → ( { ℎ ∣ ℎ : 𝐴 –1-1→ 𝐴 } ∈ ( SubMnd ‘ 𝑀 ) ↔ ( { ℎ ∣ ℎ : 𝐴 –1-1→ 𝐴 } ⊆ ( Base ‘ 𝑀 ) ∧ ( 0g ‘ 𝑀 ) ∈ { ℎ ∣ ℎ : 𝐴 –1-1→ 𝐴 } ∧ ∀ 𝑥 ∈ { ℎ ∣ ℎ : 𝐴 –1-1→ 𝐴 } ∀ 𝑦 ∈ { ℎ ∣ ℎ : 𝐴 –1-1→ 𝐴 } ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ { ℎ ∣ ℎ : 𝐴 –1-1→ 𝐴 } ) ) ) |
| 47 | 10 18 42 46 | mpbir3and | ⊢ ( 𝐴 ∈ 𝑉 → { ℎ ∣ ℎ : 𝐴 –1-1→ 𝐴 } ∈ ( SubMnd ‘ 𝑀 ) ) |