This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The currying of a group action is a group homomorphism between the group G and the symmetric group ( SymGrpY ) . (Contributed by FL, 17-May-2010) (Proof shortened by Mario Carneiro, 13-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | galactghm.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| galactghm.h | ⊢ 𝐻 = ( SymGrp ‘ 𝑌 ) | ||
| galactghm.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ ( 𝑥 ⊕ 𝑦 ) ) ) | ||
| Assertion | galactghm | ⊢ ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | galactghm.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | galactghm.h | ⊢ 𝐻 = ( SymGrp ‘ 𝑌 ) | |
| 3 | galactghm.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ ( 𝑥 ⊕ 𝑦 ) ) ) | |
| 4 | eqid | ⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) | |
| 5 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 6 | eqid | ⊢ ( +g ‘ 𝐻 ) = ( +g ‘ 𝐻 ) | |
| 7 | gagrp | ⊢ ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) → 𝐺 ∈ Grp ) | |
| 8 | gaset | ⊢ ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) → 𝑌 ∈ V ) | |
| 9 | 2 | symggrp | ⊢ ( 𝑌 ∈ V → 𝐻 ∈ Grp ) |
| 10 | 8 9 | syl | ⊢ ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) → 𝐻 ∈ Grp ) |
| 11 | eqid | ⊢ ( 𝑦 ∈ 𝑌 ↦ ( 𝑥 ⊕ 𝑦 ) ) = ( 𝑦 ∈ 𝑌 ↦ ( 𝑥 ⊕ 𝑦 ) ) | |
| 12 | 1 11 | gapm | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑦 ∈ 𝑌 ↦ ( 𝑥 ⊕ 𝑦 ) ) : 𝑌 –1-1-onto→ 𝑌 ) |
| 13 | 8 | adantr | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑥 ∈ 𝑋 ) → 𝑌 ∈ V ) |
| 14 | 2 4 | elsymgbas | ⊢ ( 𝑌 ∈ V → ( ( 𝑦 ∈ 𝑌 ↦ ( 𝑥 ⊕ 𝑦 ) ) ∈ ( Base ‘ 𝐻 ) ↔ ( 𝑦 ∈ 𝑌 ↦ ( 𝑥 ⊕ 𝑦 ) ) : 𝑌 –1-1-onto→ 𝑌 ) ) |
| 15 | 13 14 | syl | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑦 ∈ 𝑌 ↦ ( 𝑥 ⊕ 𝑦 ) ) ∈ ( Base ‘ 𝐻 ) ↔ ( 𝑦 ∈ 𝑌 ↦ ( 𝑥 ⊕ 𝑦 ) ) : 𝑌 –1-1-onto→ 𝑌 ) ) |
| 16 | 12 15 | mpbird | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑦 ∈ 𝑌 ↦ ( 𝑥 ⊕ 𝑦 ) ) ∈ ( Base ‘ 𝐻 ) ) |
| 17 | 16 3 | fmptd | ⊢ ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) → 𝐹 : 𝑋 ⟶ ( Base ‘ 𝐻 ) ) |
| 18 | df-3an | ⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) ↔ ( ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑌 ) ) | |
| 19 | 1 5 | gaass | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) ) → ( ( 𝑧 ( +g ‘ 𝐺 ) 𝑤 ) ⊕ 𝑦 ) = ( 𝑧 ⊕ ( 𝑤 ⊕ 𝑦 ) ) ) |
| 20 | 18 19 | sylan2br | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑌 ) ) → ( ( 𝑧 ( +g ‘ 𝐺 ) 𝑤 ) ⊕ 𝑦 ) = ( 𝑧 ⊕ ( 𝑤 ⊕ 𝑦 ) ) ) |
| 21 | 20 | anassrs | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑦 ∈ 𝑌 ) → ( ( 𝑧 ( +g ‘ 𝐺 ) 𝑤 ) ⊕ 𝑦 ) = ( 𝑧 ⊕ ( 𝑤 ⊕ 𝑦 ) ) ) |
| 22 | 21 | mpteq2dva | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( 𝑦 ∈ 𝑌 ↦ ( ( 𝑧 ( +g ‘ 𝐺 ) 𝑤 ) ⊕ 𝑦 ) ) = ( 𝑦 ∈ 𝑌 ↦ ( 𝑧 ⊕ ( 𝑤 ⊕ 𝑦 ) ) ) ) |
| 23 | oveq1 | ⊢ ( 𝑥 = ( 𝑧 ( +g ‘ 𝐺 ) 𝑤 ) → ( 𝑥 ⊕ 𝑦 ) = ( ( 𝑧 ( +g ‘ 𝐺 ) 𝑤 ) ⊕ 𝑦 ) ) | |
| 24 | 23 | mpteq2dv | ⊢ ( 𝑥 = ( 𝑧 ( +g ‘ 𝐺 ) 𝑤 ) → ( 𝑦 ∈ 𝑌 ↦ ( 𝑥 ⊕ 𝑦 ) ) = ( 𝑦 ∈ 𝑌 ↦ ( ( 𝑧 ( +g ‘ 𝐺 ) 𝑤 ) ⊕ 𝑦 ) ) ) |
| 25 | 7 | adantr | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → 𝐺 ∈ Grp ) |
| 26 | simprl | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → 𝑧 ∈ 𝑋 ) | |
| 27 | simprr | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → 𝑤 ∈ 𝑋 ) | |
| 28 | 1 5 | grpcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) → ( 𝑧 ( +g ‘ 𝐺 ) 𝑤 ) ∈ 𝑋 ) |
| 29 | 25 26 27 28 | syl3anc | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( 𝑧 ( +g ‘ 𝐺 ) 𝑤 ) ∈ 𝑋 ) |
| 30 | 8 | adantr | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → 𝑌 ∈ V ) |
| 31 | 30 | mptexd | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( 𝑦 ∈ 𝑌 ↦ ( ( 𝑧 ( +g ‘ 𝐺 ) 𝑤 ) ⊕ 𝑦 ) ) ∈ V ) |
| 32 | 3 24 29 31 | fvmptd3 | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑧 ( +g ‘ 𝐺 ) 𝑤 ) ) = ( 𝑦 ∈ 𝑌 ↦ ( ( 𝑧 ( +g ‘ 𝐺 ) 𝑤 ) ⊕ 𝑦 ) ) ) |
| 33 | 17 | adantr | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → 𝐹 : 𝑋 ⟶ ( Base ‘ 𝐻 ) ) |
| 34 | 33 26 | ffvelcdmd | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ ( Base ‘ 𝐻 ) ) |
| 35 | 33 27 | ffvelcdmd | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( 𝐹 ‘ 𝑤 ) ∈ ( Base ‘ 𝐻 ) ) |
| 36 | 2 4 6 | symgov | ⊢ ( ( ( 𝐹 ‘ 𝑧 ) ∈ ( Base ‘ 𝐻 ) ∧ ( 𝐹 ‘ 𝑤 ) ∈ ( Base ‘ 𝐻 ) ) → ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑤 ) ) = ( ( 𝐹 ‘ 𝑧 ) ∘ ( 𝐹 ‘ 𝑤 ) ) ) |
| 37 | 34 35 36 | syl2anc | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑤 ) ) = ( ( 𝐹 ‘ 𝑧 ) ∘ ( 𝐹 ‘ 𝑤 ) ) ) |
| 38 | 1 | gaf | ⊢ ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) → ⊕ : ( 𝑋 × 𝑌 ) ⟶ 𝑌 ) |
| 39 | 38 | ad2antrr | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑦 ∈ 𝑌 ) → ⊕ : ( 𝑋 × 𝑌 ) ⟶ 𝑌 ) |
| 40 | 27 | adantr | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑦 ∈ 𝑌 ) → 𝑤 ∈ 𝑋 ) |
| 41 | simpr | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑦 ∈ 𝑌 ) → 𝑦 ∈ 𝑌 ) | |
| 42 | 39 40 41 | fovcdmd | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑦 ∈ 𝑌 ) → ( 𝑤 ⊕ 𝑦 ) ∈ 𝑌 ) |
| 43 | oveq1 | ⊢ ( 𝑥 = 𝑤 → ( 𝑥 ⊕ 𝑦 ) = ( 𝑤 ⊕ 𝑦 ) ) | |
| 44 | 43 | mpteq2dv | ⊢ ( 𝑥 = 𝑤 → ( 𝑦 ∈ 𝑌 ↦ ( 𝑥 ⊕ 𝑦 ) ) = ( 𝑦 ∈ 𝑌 ↦ ( 𝑤 ⊕ 𝑦 ) ) ) |
| 45 | 30 | mptexd | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( 𝑦 ∈ 𝑌 ↦ ( 𝑤 ⊕ 𝑦 ) ) ∈ V ) |
| 46 | 3 44 27 45 | fvmptd3 | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( 𝐹 ‘ 𝑤 ) = ( 𝑦 ∈ 𝑌 ↦ ( 𝑤 ⊕ 𝑦 ) ) ) |
| 47 | oveq1 | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 ⊕ 𝑦 ) = ( 𝑧 ⊕ 𝑦 ) ) | |
| 48 | 47 | mpteq2dv | ⊢ ( 𝑥 = 𝑧 → ( 𝑦 ∈ 𝑌 ↦ ( 𝑥 ⊕ 𝑦 ) ) = ( 𝑦 ∈ 𝑌 ↦ ( 𝑧 ⊕ 𝑦 ) ) ) |
| 49 | 30 | mptexd | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( 𝑦 ∈ 𝑌 ↦ ( 𝑧 ⊕ 𝑦 ) ) ∈ V ) |
| 50 | 3 48 26 49 | fvmptd3 | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( 𝐹 ‘ 𝑧 ) = ( 𝑦 ∈ 𝑌 ↦ ( 𝑧 ⊕ 𝑦 ) ) ) |
| 51 | oveq2 | ⊢ ( 𝑦 = 𝑥 → ( 𝑧 ⊕ 𝑦 ) = ( 𝑧 ⊕ 𝑥 ) ) | |
| 52 | 51 | cbvmptv | ⊢ ( 𝑦 ∈ 𝑌 ↦ ( 𝑧 ⊕ 𝑦 ) ) = ( 𝑥 ∈ 𝑌 ↦ ( 𝑧 ⊕ 𝑥 ) ) |
| 53 | 50 52 | eqtrdi | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( 𝐹 ‘ 𝑧 ) = ( 𝑥 ∈ 𝑌 ↦ ( 𝑧 ⊕ 𝑥 ) ) ) |
| 54 | oveq2 | ⊢ ( 𝑥 = ( 𝑤 ⊕ 𝑦 ) → ( 𝑧 ⊕ 𝑥 ) = ( 𝑧 ⊕ ( 𝑤 ⊕ 𝑦 ) ) ) | |
| 55 | 42 46 53 54 | fmptco | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝑧 ) ∘ ( 𝐹 ‘ 𝑤 ) ) = ( 𝑦 ∈ 𝑌 ↦ ( 𝑧 ⊕ ( 𝑤 ⊕ 𝑦 ) ) ) ) |
| 56 | 37 55 | eqtrd | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑤 ) ) = ( 𝑦 ∈ 𝑌 ↦ ( 𝑧 ⊕ ( 𝑤 ⊕ 𝑦 ) ) ) ) |
| 57 | 22 32 56 | 3eqtr4d | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑧 ( +g ‘ 𝐺 ) 𝑤 ) ) = ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑤 ) ) ) |
| 58 | 1 4 5 6 7 10 17 57 | isghmd | ⊢ ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ) |