This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The symmetric group on a set A is a submonoid of the monoid of endofunctions on A . Alternate proof based on issubmndb and not on injsubmefmnd and sursubmefmnd . (Contributed by AV, 18-Feb-2024) (Revised by AV, 30-Mar-2024) (New usage is discouraged.) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | symgsubmefmndALT.m | |- M = ( EndoFMnd ` A ) |
|
| symgsubmefmndALT.g | |- G = ( SymGrp ` A ) |
||
| symgsubmefmndALT.b | |- B = ( Base ` G ) |
||
| Assertion | symgsubmefmndALT | |- ( A e. V -> B e. ( SubMnd ` M ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | symgsubmefmndALT.m | |- M = ( EndoFMnd ` A ) |
|
| 2 | symgsubmefmndALT.g | |- G = ( SymGrp ` A ) |
|
| 3 | symgsubmefmndALT.b | |- B = ( Base ` G ) |
|
| 4 | 1 | efmndmnd | |- ( A e. V -> M e. Mnd ) |
| 5 | 2 3 1 | symgressbas | |- G = ( M |`s B ) |
| 6 | 2 | symggrp | |- ( A e. V -> G e. Grp ) |
| 7 | grpmnd | |- ( G e. Grp -> G e. Mnd ) |
|
| 8 | 6 7 | syl | |- ( A e. V -> G e. Mnd ) |
| 9 | 5 8 | eqeltrrid | |- ( A e. V -> ( M |`s B ) e. Mnd ) |
| 10 | 2 | idresperm | |- ( A e. V -> ( _I |` A ) e. ( Base ` G ) ) |
| 11 | 1 | efmndid | |- ( A e. V -> ( _I |` A ) = ( 0g ` M ) ) |
| 12 | 3 | eqcomi | |- ( Base ` G ) = B |
| 13 | 12 | a1i | |- ( A e. V -> ( Base ` G ) = B ) |
| 14 | 10 11 13 | 3eltr3d | |- ( A e. V -> ( 0g ` M ) e. B ) |
| 15 | 2 3 | symgbasmap | |- ( f e. B -> f e. ( A ^m A ) ) |
| 16 | 15 | ssriv | |- B C_ ( A ^m A ) |
| 17 | eqid | |- ( Base ` M ) = ( Base ` M ) |
|
| 18 | 1 17 | efmndbas | |- ( Base ` M ) = ( A ^m A ) |
| 19 | 16 18 | sseqtrri | |- B C_ ( Base ` M ) |
| 20 | 14 19 | jctil | |- ( A e. V -> ( B C_ ( Base ` M ) /\ ( 0g ` M ) e. B ) ) |
| 21 | eqid | |- ( 0g ` M ) = ( 0g ` M ) |
|
| 22 | 17 21 | issubmndb | |- ( B e. ( SubMnd ` M ) <-> ( ( M e. Mnd /\ ( M |`s B ) e. Mnd ) /\ ( B C_ ( Base ` M ) /\ ( 0g ` M ) e. B ) ) ) |
| 23 | 4 9 20 22 | syl21anbrc | |- ( A e. V -> B e. ( SubMnd ` M ) ) |