This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The symmetric group on a set A is a submonoid of the monoid of endofunctions on A . Alternate proof based on issubmndb and not on injsubmefmnd and sursubmefmnd . (Contributed by AV, 18-Feb-2024) (Revised by AV, 30-Mar-2024) (New usage is discouraged.) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | symgsubmefmndALT.m | ||
| symgsubmefmndALT.g | |||
| symgsubmefmndALT.b | |||
| Assertion | symgsubmefmndALT |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | symgsubmefmndALT.m | ||
| 2 | symgsubmefmndALT.g | ||
| 3 | symgsubmefmndALT.b | ||
| 4 | 1 | efmndmnd | |
| 5 | 2 3 1 | symgressbas | |
| 6 | 2 | symggrp | |
| 7 | grpmnd | ||
| 8 | 6 7 | syl | |
| 9 | 5 8 | eqeltrrid | |
| 10 | 2 | idresperm | |
| 11 | 1 | efmndid | |
| 12 | 3 | eqcomi | |
| 13 | 12 | a1i | |
| 14 | 10 11 13 | 3eltr3d | |
| 15 | 2 3 | symgbasmap | |
| 16 | 15 | ssriv | |
| 17 | eqid | ||
| 18 | 1 17 | efmndbas | |
| 19 | 16 18 | sseqtrri | |
| 20 | 14 19 | jctil | |
| 21 | eqid | ||
| 22 | 17 21 | issubmndb | |
| 23 | 4 9 20 22 | syl21anbrc |