This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The submonoid predicate. Analogous to issubg . (Contributed by AV, 1-Feb-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | issubmndb.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| issubmndb.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| Assertion | issubmndb | ⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ↔ ( ( 𝐺 ∈ Mnd ∧ ( 𝐺 ↾s 𝑆 ) ∈ Mnd ) ∧ ( 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issubmndb.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | issubmndb.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 3 | eqid | ⊢ ( 𝐺 ↾s 𝑆 ) = ( 𝐺 ↾s 𝑆 ) | |
| 4 | 1 2 3 | issubm2 | ⊢ ( 𝐺 ∈ Mnd → ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ↔ ( 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ∧ ( 𝐺 ↾s 𝑆 ) ∈ Mnd ) ) ) |
| 5 | 3anrot | ⊢ ( ( ( 𝐺 ↾s 𝑆 ) ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ) ↔ ( 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ∧ ( 𝐺 ↾s 𝑆 ) ∈ Mnd ) ) | |
| 6 | 3anass | ⊢ ( ( ( 𝐺 ↾s 𝑆 ) ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ) ↔ ( ( 𝐺 ↾s 𝑆 ) ∈ Mnd ∧ ( 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ) ) ) | |
| 7 | 5 6 | bitr3i | ⊢ ( ( 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ∧ ( 𝐺 ↾s 𝑆 ) ∈ Mnd ) ↔ ( ( 𝐺 ↾s 𝑆 ) ∈ Mnd ∧ ( 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ) ) ) |
| 8 | 4 7 | bitrdi | ⊢ ( 𝐺 ∈ Mnd → ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ↔ ( ( 𝐺 ↾s 𝑆 ) ∈ Mnd ∧ ( 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ) ) ) ) |
| 9 | 8 | pm5.32i | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ) ↔ ( 𝐺 ∈ Mnd ∧ ( ( 𝐺 ↾s 𝑆 ) ∈ Mnd ∧ ( 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ) ) ) ) |
| 10 | submrcl | ⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) → 𝐺 ∈ Mnd ) | |
| 11 | 10 | pm4.71ri | ⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ↔ ( 𝐺 ∈ Mnd ∧ 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ) ) |
| 12 | anass | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ ( 𝐺 ↾s 𝑆 ) ∈ Mnd ) ∧ ( 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ) ) ↔ ( 𝐺 ∈ Mnd ∧ ( ( 𝐺 ↾s 𝑆 ) ∈ Mnd ∧ ( 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ) ) ) ) | |
| 13 | 9 11 12 | 3bitr4i | ⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ↔ ( ( 𝐺 ∈ Mnd ∧ ( 𝐺 ↾s 𝑆 ) ∈ Mnd ) ∧ ( 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ) ) ) |