This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Right cancellation law for groups. (Contributed by NM, 24-Aug-2011) (Proof shortened by Mario Carneiro, 6-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grprcan.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| grprcan.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| Assertion | grprcan | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 + 𝑍 ) = ( 𝑌 + 𝑍 ) ↔ 𝑋 = 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grprcan.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | grprcan.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 4 | 1 2 3 | grpinvex | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑍 ∈ 𝐵 ) → ∃ 𝑦 ∈ 𝐵 ( 𝑦 + 𝑍 ) = ( 0g ‘ 𝐺 ) ) |
| 5 | 4 | 3ad2antr3 | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ∃ 𝑦 ∈ 𝐵 ( 𝑦 + 𝑍 ) = ( 0g ‘ 𝐺 ) ) |
| 6 | simprr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( ( 𝑦 ∈ 𝐵 ∧ ( 𝑦 + 𝑍 ) = ( 0g ‘ 𝐺 ) ) ∧ ( 𝑋 + 𝑍 ) = ( 𝑌 + 𝑍 ) ) ) → ( 𝑋 + 𝑍 ) = ( 𝑌 + 𝑍 ) ) | |
| 7 | 6 | oveq1d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( ( 𝑦 ∈ 𝐵 ∧ ( 𝑦 + 𝑍 ) = ( 0g ‘ 𝐺 ) ) ∧ ( 𝑋 + 𝑍 ) = ( 𝑌 + 𝑍 ) ) ) → ( ( 𝑋 + 𝑍 ) + 𝑦 ) = ( ( 𝑌 + 𝑍 ) + 𝑦 ) ) |
| 8 | simpll | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( ( 𝑦 ∈ 𝐵 ∧ ( 𝑦 + 𝑍 ) = ( 0g ‘ 𝐺 ) ) ∧ ( 𝑋 + 𝑍 ) = ( 𝑌 + 𝑍 ) ) ) → 𝐺 ∈ Grp ) | |
| 9 | 1 2 | grpass | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( ( 𝑢 + 𝑣 ) + 𝑤 ) = ( 𝑢 + ( 𝑣 + 𝑤 ) ) ) |
| 10 | 8 9 | sylan | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( ( 𝑦 ∈ 𝐵 ∧ ( 𝑦 + 𝑍 ) = ( 0g ‘ 𝐺 ) ) ∧ ( 𝑋 + 𝑍 ) = ( 𝑌 + 𝑍 ) ) ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( ( 𝑢 + 𝑣 ) + 𝑤 ) = ( 𝑢 + ( 𝑣 + 𝑤 ) ) ) |
| 11 | simplr1 | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( ( 𝑦 ∈ 𝐵 ∧ ( 𝑦 + 𝑍 ) = ( 0g ‘ 𝐺 ) ) ∧ ( 𝑋 + 𝑍 ) = ( 𝑌 + 𝑍 ) ) ) → 𝑋 ∈ 𝐵 ) | |
| 12 | simplr3 | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( ( 𝑦 ∈ 𝐵 ∧ ( 𝑦 + 𝑍 ) = ( 0g ‘ 𝐺 ) ) ∧ ( 𝑋 + 𝑍 ) = ( 𝑌 + 𝑍 ) ) ) → 𝑍 ∈ 𝐵 ) | |
| 13 | simprll | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( ( 𝑦 ∈ 𝐵 ∧ ( 𝑦 + 𝑍 ) = ( 0g ‘ 𝐺 ) ) ∧ ( 𝑋 + 𝑍 ) = ( 𝑌 + 𝑍 ) ) ) → 𝑦 ∈ 𝐵 ) | |
| 14 | 10 11 12 13 | caovassd | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( ( 𝑦 ∈ 𝐵 ∧ ( 𝑦 + 𝑍 ) = ( 0g ‘ 𝐺 ) ) ∧ ( 𝑋 + 𝑍 ) = ( 𝑌 + 𝑍 ) ) ) → ( ( 𝑋 + 𝑍 ) + 𝑦 ) = ( 𝑋 + ( 𝑍 + 𝑦 ) ) ) |
| 15 | simplr2 | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( ( 𝑦 ∈ 𝐵 ∧ ( 𝑦 + 𝑍 ) = ( 0g ‘ 𝐺 ) ) ∧ ( 𝑋 + 𝑍 ) = ( 𝑌 + 𝑍 ) ) ) → 𝑌 ∈ 𝐵 ) | |
| 16 | 10 15 12 13 | caovassd | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( ( 𝑦 ∈ 𝐵 ∧ ( 𝑦 + 𝑍 ) = ( 0g ‘ 𝐺 ) ) ∧ ( 𝑋 + 𝑍 ) = ( 𝑌 + 𝑍 ) ) ) → ( ( 𝑌 + 𝑍 ) + 𝑦 ) = ( 𝑌 + ( 𝑍 + 𝑦 ) ) ) |
| 17 | 7 14 16 | 3eqtr3d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( ( 𝑦 ∈ 𝐵 ∧ ( 𝑦 + 𝑍 ) = ( 0g ‘ 𝐺 ) ) ∧ ( 𝑋 + 𝑍 ) = ( 𝑌 + 𝑍 ) ) ) → ( 𝑋 + ( 𝑍 + 𝑦 ) ) = ( 𝑌 + ( 𝑍 + 𝑦 ) ) ) |
| 18 | 1 2 | grpcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) → ( 𝑢 + 𝑣 ) ∈ 𝐵 ) |
| 19 | 8 18 | syl3an1 | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( ( 𝑦 ∈ 𝐵 ∧ ( 𝑦 + 𝑍 ) = ( 0g ‘ 𝐺 ) ) ∧ ( 𝑋 + 𝑍 ) = ( 𝑌 + 𝑍 ) ) ) ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) → ( 𝑢 + 𝑣 ) ∈ 𝐵 ) |
| 20 | 1 3 | grpidcl | ⊢ ( 𝐺 ∈ Grp → ( 0g ‘ 𝐺 ) ∈ 𝐵 ) |
| 21 | 8 20 | syl | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( ( 𝑦 ∈ 𝐵 ∧ ( 𝑦 + 𝑍 ) = ( 0g ‘ 𝐺 ) ) ∧ ( 𝑋 + 𝑍 ) = ( 𝑌 + 𝑍 ) ) ) → ( 0g ‘ 𝐺 ) ∈ 𝐵 ) |
| 22 | 1 2 3 | grplid | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑢 ∈ 𝐵 ) → ( ( 0g ‘ 𝐺 ) + 𝑢 ) = 𝑢 ) |
| 23 | 8 22 | sylan | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( ( 𝑦 ∈ 𝐵 ∧ ( 𝑦 + 𝑍 ) = ( 0g ‘ 𝐺 ) ) ∧ ( 𝑋 + 𝑍 ) = ( 𝑌 + 𝑍 ) ) ) ∧ 𝑢 ∈ 𝐵 ) → ( ( 0g ‘ 𝐺 ) + 𝑢 ) = 𝑢 ) |
| 24 | 1 2 3 | grpinvex | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑢 ∈ 𝐵 ) → ∃ 𝑣 ∈ 𝐵 ( 𝑣 + 𝑢 ) = ( 0g ‘ 𝐺 ) ) |
| 25 | 8 24 | sylan | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( ( 𝑦 ∈ 𝐵 ∧ ( 𝑦 + 𝑍 ) = ( 0g ‘ 𝐺 ) ) ∧ ( 𝑋 + 𝑍 ) = ( 𝑌 + 𝑍 ) ) ) ∧ 𝑢 ∈ 𝐵 ) → ∃ 𝑣 ∈ 𝐵 ( 𝑣 + 𝑢 ) = ( 0g ‘ 𝐺 ) ) |
| 26 | simpr | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( ( 𝑦 ∈ 𝐵 ∧ ( 𝑦 + 𝑍 ) = ( 0g ‘ 𝐺 ) ) ∧ ( 𝑋 + 𝑍 ) = ( 𝑌 + 𝑍 ) ) ) ∧ 𝑍 ∈ 𝐵 ) → 𝑍 ∈ 𝐵 ) | |
| 27 | 13 | adantr | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( ( 𝑦 ∈ 𝐵 ∧ ( 𝑦 + 𝑍 ) = ( 0g ‘ 𝐺 ) ) ∧ ( 𝑋 + 𝑍 ) = ( 𝑌 + 𝑍 ) ) ) ∧ 𝑍 ∈ 𝐵 ) → 𝑦 ∈ 𝐵 ) |
| 28 | simprlr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( ( 𝑦 ∈ 𝐵 ∧ ( 𝑦 + 𝑍 ) = ( 0g ‘ 𝐺 ) ) ∧ ( 𝑋 + 𝑍 ) = ( 𝑌 + 𝑍 ) ) ) → ( 𝑦 + 𝑍 ) = ( 0g ‘ 𝐺 ) ) | |
| 29 | 28 | adantr | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( ( 𝑦 ∈ 𝐵 ∧ ( 𝑦 + 𝑍 ) = ( 0g ‘ 𝐺 ) ) ∧ ( 𝑋 + 𝑍 ) = ( 𝑌 + 𝑍 ) ) ) ∧ 𝑍 ∈ 𝐵 ) → ( 𝑦 + 𝑍 ) = ( 0g ‘ 𝐺 ) ) |
| 30 | 19 21 23 10 25 26 27 29 | grpinva | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( ( 𝑦 ∈ 𝐵 ∧ ( 𝑦 + 𝑍 ) = ( 0g ‘ 𝐺 ) ) ∧ ( 𝑋 + 𝑍 ) = ( 𝑌 + 𝑍 ) ) ) ∧ 𝑍 ∈ 𝐵 ) → ( 𝑍 + 𝑦 ) = ( 0g ‘ 𝐺 ) ) |
| 31 | 12 30 | mpdan | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( ( 𝑦 ∈ 𝐵 ∧ ( 𝑦 + 𝑍 ) = ( 0g ‘ 𝐺 ) ) ∧ ( 𝑋 + 𝑍 ) = ( 𝑌 + 𝑍 ) ) ) → ( 𝑍 + 𝑦 ) = ( 0g ‘ 𝐺 ) ) |
| 32 | 31 | oveq2d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( ( 𝑦 ∈ 𝐵 ∧ ( 𝑦 + 𝑍 ) = ( 0g ‘ 𝐺 ) ) ∧ ( 𝑋 + 𝑍 ) = ( 𝑌 + 𝑍 ) ) ) → ( 𝑋 + ( 𝑍 + 𝑦 ) ) = ( 𝑋 + ( 0g ‘ 𝐺 ) ) ) |
| 33 | 31 | oveq2d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( ( 𝑦 ∈ 𝐵 ∧ ( 𝑦 + 𝑍 ) = ( 0g ‘ 𝐺 ) ) ∧ ( 𝑋 + 𝑍 ) = ( 𝑌 + 𝑍 ) ) ) → ( 𝑌 + ( 𝑍 + 𝑦 ) ) = ( 𝑌 + ( 0g ‘ 𝐺 ) ) ) |
| 34 | 17 32 33 | 3eqtr3d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( ( 𝑦 ∈ 𝐵 ∧ ( 𝑦 + 𝑍 ) = ( 0g ‘ 𝐺 ) ) ∧ ( 𝑋 + 𝑍 ) = ( 𝑌 + 𝑍 ) ) ) → ( 𝑋 + ( 0g ‘ 𝐺 ) ) = ( 𝑌 + ( 0g ‘ 𝐺 ) ) ) |
| 35 | 1 2 3 8 11 | grpridd | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( ( 𝑦 ∈ 𝐵 ∧ ( 𝑦 + 𝑍 ) = ( 0g ‘ 𝐺 ) ) ∧ ( 𝑋 + 𝑍 ) = ( 𝑌 + 𝑍 ) ) ) → ( 𝑋 + ( 0g ‘ 𝐺 ) ) = 𝑋 ) |
| 36 | 1 2 3 8 15 | grpridd | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( ( 𝑦 ∈ 𝐵 ∧ ( 𝑦 + 𝑍 ) = ( 0g ‘ 𝐺 ) ) ∧ ( 𝑋 + 𝑍 ) = ( 𝑌 + 𝑍 ) ) ) → ( 𝑌 + ( 0g ‘ 𝐺 ) ) = 𝑌 ) |
| 37 | 34 35 36 | 3eqtr3d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( ( 𝑦 ∈ 𝐵 ∧ ( 𝑦 + 𝑍 ) = ( 0g ‘ 𝐺 ) ) ∧ ( 𝑋 + 𝑍 ) = ( 𝑌 + 𝑍 ) ) ) → 𝑋 = 𝑌 ) |
| 38 | 37 | expr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑦 + 𝑍 ) = ( 0g ‘ 𝐺 ) ) ) → ( ( 𝑋 + 𝑍 ) = ( 𝑌 + 𝑍 ) → 𝑋 = 𝑌 ) ) |
| 39 | 5 38 | rexlimddv | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 + 𝑍 ) = ( 𝑌 + 𝑍 ) → 𝑋 = 𝑌 ) ) |
| 40 | oveq1 | ⊢ ( 𝑋 = 𝑌 → ( 𝑋 + 𝑍 ) = ( 𝑌 + 𝑍 ) ) | |
| 41 | 39 40 | impbid1 | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 + 𝑍 ) = ( 𝑌 + 𝑍 ) ↔ 𝑋 = 𝑌 ) ) |