This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extract two adjacent symbols from a word in reverse direction. (Contributed by AV, 11-May-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | swrds2m | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 2 ... ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 substr 〈 ( 𝑁 − 2 ) , 𝑁 〉 ) = 〈“ ( 𝑊 ‘ ( 𝑁 − 2 ) ) ( 𝑊 ‘ ( 𝑁 − 1 ) ) ”〉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzelz | ⊢ ( 𝑁 ∈ ( 2 ... ( ♯ ‘ 𝑊 ) ) → 𝑁 ∈ ℤ ) | |
| 2 | 1 | zcnd | ⊢ ( 𝑁 ∈ ( 2 ... ( ♯ ‘ 𝑊 ) ) → 𝑁 ∈ ℂ ) |
| 3 | 2cnd | ⊢ ( 𝑁 ∈ ( 2 ... ( ♯ ‘ 𝑊 ) ) → 2 ∈ ℂ ) | |
| 4 | 2 3 | npcand | ⊢ ( 𝑁 ∈ ( 2 ... ( ♯ ‘ 𝑊 ) ) → ( ( 𝑁 − 2 ) + 2 ) = 𝑁 ) |
| 5 | 4 | eqcomd | ⊢ ( 𝑁 ∈ ( 2 ... ( ♯ ‘ 𝑊 ) ) → 𝑁 = ( ( 𝑁 − 2 ) + 2 ) ) |
| 6 | 5 | opeq2d | ⊢ ( 𝑁 ∈ ( 2 ... ( ♯ ‘ 𝑊 ) ) → 〈 ( 𝑁 − 2 ) , 𝑁 〉 = 〈 ( 𝑁 − 2 ) , ( ( 𝑁 − 2 ) + 2 ) 〉 ) |
| 7 | 6 | oveq2d | ⊢ ( 𝑁 ∈ ( 2 ... ( ♯ ‘ 𝑊 ) ) → ( 𝑊 substr 〈 ( 𝑁 − 2 ) , 𝑁 〉 ) = ( 𝑊 substr 〈 ( 𝑁 − 2 ) , ( ( 𝑁 − 2 ) + 2 ) 〉 ) ) |
| 8 | 7 | adantl | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 2 ... ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 substr 〈 ( 𝑁 − 2 ) , 𝑁 〉 ) = ( 𝑊 substr 〈 ( 𝑁 − 2 ) , ( ( 𝑁 − 2 ) + 2 ) 〉 ) ) |
| 9 | simpl | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 2 ... ( ♯ ‘ 𝑊 ) ) ) → 𝑊 ∈ Word 𝑉 ) | |
| 10 | elfzuz | ⊢ ( 𝑁 ∈ ( 2 ... ( ♯ ‘ 𝑊 ) ) → 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) | |
| 11 | uznn0sub | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑁 − 2 ) ∈ ℕ0 ) | |
| 12 | 10 11 | syl | ⊢ ( 𝑁 ∈ ( 2 ... ( ♯ ‘ 𝑊 ) ) → ( 𝑁 − 2 ) ∈ ℕ0 ) |
| 13 | 12 | adantl | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 2 ... ( ♯ ‘ 𝑊 ) ) ) → ( 𝑁 − 2 ) ∈ ℕ0 ) |
| 14 | 1cnd | ⊢ ( 𝑁 ∈ ( 2 ... ( ♯ ‘ 𝑊 ) ) → 1 ∈ ℂ ) | |
| 15 | 2 3 14 | subsubd | ⊢ ( 𝑁 ∈ ( 2 ... ( ♯ ‘ 𝑊 ) ) → ( 𝑁 − ( 2 − 1 ) ) = ( ( 𝑁 − 2 ) + 1 ) ) |
| 16 | 2m1e1 | ⊢ ( 2 − 1 ) = 1 | |
| 17 | 16 | oveq2i | ⊢ ( 𝑁 − ( 2 − 1 ) ) = ( 𝑁 − 1 ) |
| 18 | 15 17 | eqtr3di | ⊢ ( 𝑁 ∈ ( 2 ... ( ♯ ‘ 𝑊 ) ) → ( ( 𝑁 − 2 ) + 1 ) = ( 𝑁 − 1 ) ) |
| 19 | 2eluzge1 | ⊢ 2 ∈ ( ℤ≥ ‘ 1 ) | |
| 20 | fzss1 | ⊢ ( 2 ∈ ( ℤ≥ ‘ 1 ) → ( 2 ... ( ♯ ‘ 𝑊 ) ) ⊆ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) | |
| 21 | 19 20 | ax-mp | ⊢ ( 2 ... ( ♯ ‘ 𝑊 ) ) ⊆ ( 1 ... ( ♯ ‘ 𝑊 ) ) |
| 22 | 21 | sseli | ⊢ ( 𝑁 ∈ ( 2 ... ( ♯ ‘ 𝑊 ) ) → 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) |
| 23 | fz1fzo0m1 | ⊢ ( 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) → ( 𝑁 − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | |
| 24 | 22 23 | syl | ⊢ ( 𝑁 ∈ ( 2 ... ( ♯ ‘ 𝑊 ) ) → ( 𝑁 − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 25 | 18 24 | eqeltrd | ⊢ ( 𝑁 ∈ ( 2 ... ( ♯ ‘ 𝑊 ) ) → ( ( 𝑁 − 2 ) + 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 26 | 25 | adantl | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 2 ... ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑁 − 2 ) + 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 27 | swrds2 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( 𝑁 − 2 ) ∈ ℕ0 ∧ ( ( 𝑁 − 2 ) + 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 substr 〈 ( 𝑁 − 2 ) , ( ( 𝑁 − 2 ) + 2 ) 〉 ) = 〈“ ( 𝑊 ‘ ( 𝑁 − 2 ) ) ( 𝑊 ‘ ( ( 𝑁 − 2 ) + 1 ) ) ”〉 ) | |
| 28 | 9 13 26 27 | syl3anc | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 2 ... ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 substr 〈 ( 𝑁 − 2 ) , ( ( 𝑁 − 2 ) + 2 ) 〉 ) = 〈“ ( 𝑊 ‘ ( 𝑁 − 2 ) ) ( 𝑊 ‘ ( ( 𝑁 − 2 ) + 1 ) ) ”〉 ) |
| 29 | eqidd | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 2 ... ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 ‘ ( 𝑁 − 2 ) ) = ( 𝑊 ‘ ( 𝑁 − 2 ) ) ) | |
| 30 | 18 | fveq2d | ⊢ ( 𝑁 ∈ ( 2 ... ( ♯ ‘ 𝑊 ) ) → ( 𝑊 ‘ ( ( 𝑁 − 2 ) + 1 ) ) = ( 𝑊 ‘ ( 𝑁 − 1 ) ) ) |
| 31 | 30 | adantl | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 2 ... ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 ‘ ( ( 𝑁 − 2 ) + 1 ) ) = ( 𝑊 ‘ ( 𝑁 − 1 ) ) ) |
| 32 | 29 31 | s2eqd | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 2 ... ( ♯ ‘ 𝑊 ) ) ) → 〈“ ( 𝑊 ‘ ( 𝑁 − 2 ) ) ( 𝑊 ‘ ( ( 𝑁 − 2 ) + 1 ) ) ”〉 = 〈“ ( 𝑊 ‘ ( 𝑁 − 2 ) ) ( 𝑊 ‘ ( 𝑁 − 1 ) ) ”〉 ) |
| 33 | 8 28 32 | 3eqtrd | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 2 ... ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 substr 〈 ( 𝑁 − 2 ) , 𝑁 〉 ) = 〈“ ( 𝑊 ‘ ( 𝑁 − 2 ) ) ( 𝑊 ‘ ( 𝑁 − 1 ) ) ”〉 ) |