This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A word of length 1 is a singleton word. (Contributed by Stefan O'Rear, 23-Aug-2015) (Proof shortened by AV, 1-May-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eqs1 | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ ( ♯ ‘ 𝑊 ) = 1 ) → 𝑊 = 〈“ ( 𝑊 ‘ 0 ) ”〉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id | ⊢ ( ( ♯ ‘ 𝑊 ) = 1 → ( ♯ ‘ 𝑊 ) = 1 ) | |
| 2 | s1len | ⊢ ( ♯ ‘ 〈“ ( 𝑊 ‘ 0 ) ”〉 ) = 1 | |
| 3 | 1 2 | eqtr4di | ⊢ ( ( ♯ ‘ 𝑊 ) = 1 → ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 〈“ ( 𝑊 ‘ 0 ) ”〉 ) ) |
| 4 | fvex | ⊢ ( 𝑊 ‘ 0 ) ∈ V | |
| 5 | s1fv | ⊢ ( ( 𝑊 ‘ 0 ) ∈ V → ( 〈“ ( 𝑊 ‘ 0 ) ”〉 ‘ 0 ) = ( 𝑊 ‘ 0 ) ) | |
| 6 | 4 5 | ax-mp | ⊢ ( 〈“ ( 𝑊 ‘ 0 ) ”〉 ‘ 0 ) = ( 𝑊 ‘ 0 ) |
| 7 | 6 | eqcomi | ⊢ ( 𝑊 ‘ 0 ) = ( 〈“ ( 𝑊 ‘ 0 ) ”〉 ‘ 0 ) |
| 8 | c0ex | ⊢ 0 ∈ V | |
| 9 | fveq2 | ⊢ ( 𝑥 = 0 → ( 𝑊 ‘ 𝑥 ) = ( 𝑊 ‘ 0 ) ) | |
| 10 | fveq2 | ⊢ ( 𝑥 = 0 → ( 〈“ ( 𝑊 ‘ 0 ) ”〉 ‘ 𝑥 ) = ( 〈“ ( 𝑊 ‘ 0 ) ”〉 ‘ 0 ) ) | |
| 11 | 9 10 | eqeq12d | ⊢ ( 𝑥 = 0 → ( ( 𝑊 ‘ 𝑥 ) = ( 〈“ ( 𝑊 ‘ 0 ) ”〉 ‘ 𝑥 ) ↔ ( 𝑊 ‘ 0 ) = ( 〈“ ( 𝑊 ‘ 0 ) ”〉 ‘ 0 ) ) ) |
| 12 | 8 11 | ralsn | ⊢ ( ∀ 𝑥 ∈ { 0 } ( 𝑊 ‘ 𝑥 ) = ( 〈“ ( 𝑊 ‘ 0 ) ”〉 ‘ 𝑥 ) ↔ ( 𝑊 ‘ 0 ) = ( 〈“ ( 𝑊 ‘ 0 ) ”〉 ‘ 0 ) ) |
| 13 | 7 12 | mpbir | ⊢ ∀ 𝑥 ∈ { 0 } ( 𝑊 ‘ 𝑥 ) = ( 〈“ ( 𝑊 ‘ 0 ) ”〉 ‘ 𝑥 ) |
| 14 | oveq2 | ⊢ ( ( ♯ ‘ 𝑊 ) = 1 → ( 0 ..^ ( ♯ ‘ 𝑊 ) ) = ( 0 ..^ 1 ) ) | |
| 15 | fzo01 | ⊢ ( 0 ..^ 1 ) = { 0 } | |
| 16 | 14 15 | eqtrdi | ⊢ ( ( ♯ ‘ 𝑊 ) = 1 → ( 0 ..^ ( ♯ ‘ 𝑊 ) ) = { 0 } ) |
| 17 | 16 | raleqdv | ⊢ ( ( ♯ ‘ 𝑊 ) = 1 → ( ∀ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑥 ) = ( 〈“ ( 𝑊 ‘ 0 ) ”〉 ‘ 𝑥 ) ↔ ∀ 𝑥 ∈ { 0 } ( 𝑊 ‘ 𝑥 ) = ( 〈“ ( 𝑊 ‘ 0 ) ”〉 ‘ 𝑥 ) ) ) |
| 18 | 13 17 | mpbiri | ⊢ ( ( ♯ ‘ 𝑊 ) = 1 → ∀ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑥 ) = ( 〈“ ( 𝑊 ‘ 0 ) ”〉 ‘ 𝑥 ) ) |
| 19 | 3 18 | jca | ⊢ ( ( ♯ ‘ 𝑊 ) = 1 → ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 〈“ ( 𝑊 ‘ 0 ) ”〉 ) ∧ ∀ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑥 ) = ( 〈“ ( 𝑊 ‘ 0 ) ”〉 ‘ 𝑥 ) ) ) |
| 20 | s1cli | ⊢ 〈“ ( 𝑊 ‘ 0 ) ”〉 ∈ Word V | |
| 21 | eqwrd | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 〈“ ( 𝑊 ‘ 0 ) ”〉 ∈ Word V ) → ( 𝑊 = 〈“ ( 𝑊 ‘ 0 ) ”〉 ↔ ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 〈“ ( 𝑊 ‘ 0 ) ”〉 ) ∧ ∀ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑥 ) = ( 〈“ ( 𝑊 ‘ 0 ) ”〉 ‘ 𝑥 ) ) ) ) | |
| 22 | 20 21 | mpan2 | ⊢ ( 𝑊 ∈ Word 𝐴 → ( 𝑊 = 〈“ ( 𝑊 ‘ 0 ) ”〉 ↔ ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 〈“ ( 𝑊 ‘ 0 ) ”〉 ) ∧ ∀ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑥 ) = ( 〈“ ( 𝑊 ‘ 0 ) ”〉 ‘ 𝑥 ) ) ) ) |
| 23 | 19 22 | imbitrrid | ⊢ ( 𝑊 ∈ Word 𝐴 → ( ( ♯ ‘ 𝑊 ) = 1 → 𝑊 = 〈“ ( 𝑊 ‘ 0 ) ”〉 ) ) |
| 24 | 23 | imp | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ ( ♯ ‘ 𝑊 ) = 1 ) → 𝑊 = 〈“ ( 𝑊 ‘ 0 ) ”〉 ) |