This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extract the last single symbol from a word. (Contributed by Alexander van der Vekens, 23-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | swrdlsw | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ) → ( 𝑊 substr 〈 ( ( ♯ ‘ 𝑊 ) − 1 ) , ( ♯ ‘ 𝑊 ) 〉 ) = 〈“ ( lastS ‘ 𝑊 ) ”〉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashneq0 | ⊢ ( 𝑊 ∈ Word 𝑉 → ( 0 < ( ♯ ‘ 𝑊 ) ↔ 𝑊 ≠ ∅ ) ) | |
| 2 | lencl | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) | |
| 3 | nn0z | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 → ( ♯ ‘ 𝑊 ) ∈ ℤ ) | |
| 4 | elnnz | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ↔ ( ( ♯ ‘ 𝑊 ) ∈ ℤ ∧ 0 < ( ♯ ‘ 𝑊 ) ) ) | |
| 5 | fzo0end | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ → ( ( ♯ ‘ 𝑊 ) − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | |
| 6 | 4 5 | sylbir | ⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℤ ∧ 0 < ( ♯ ‘ 𝑊 ) ) → ( ( ♯ ‘ 𝑊 ) − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 7 | 6 | ex | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℤ → ( 0 < ( ♯ ‘ 𝑊 ) → ( ( ♯ ‘ 𝑊 ) − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) |
| 8 | 2 3 7 | 3syl | ⊢ ( 𝑊 ∈ Word 𝑉 → ( 0 < ( ♯ ‘ 𝑊 ) → ( ( ♯ ‘ 𝑊 ) − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) |
| 9 | 1 8 | sylbird | ⊢ ( 𝑊 ∈ Word 𝑉 → ( 𝑊 ≠ ∅ → ( ( ♯ ‘ 𝑊 ) − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) |
| 10 | 9 | imp | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ) → ( ( ♯ ‘ 𝑊 ) − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 11 | swrds1 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑊 ) − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 substr 〈 ( ( ♯ ‘ 𝑊 ) − 1 ) , ( ( ( ♯ ‘ 𝑊 ) − 1 ) + 1 ) 〉 ) = 〈“ ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ”〉 ) | |
| 12 | 10 11 | syldan | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ) → ( 𝑊 substr 〈 ( ( ♯ ‘ 𝑊 ) − 1 ) , ( ( ( ♯ ‘ 𝑊 ) − 1 ) + 1 ) 〉 ) = 〈“ ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ”〉 ) |
| 13 | nn0cn | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 → ( ♯ ‘ 𝑊 ) ∈ ℂ ) | |
| 14 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 15 | 13 14 | jctir | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 → ( ( ♯ ‘ 𝑊 ) ∈ ℂ ∧ 1 ∈ ℂ ) ) |
| 16 | npcan | ⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( ( ♯ ‘ 𝑊 ) − 1 ) + 1 ) = ( ♯ ‘ 𝑊 ) ) | |
| 17 | 16 | eqcomd | ⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ♯ ‘ 𝑊 ) = ( ( ( ♯ ‘ 𝑊 ) − 1 ) + 1 ) ) |
| 18 | 2 15 17 | 3syl | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) = ( ( ( ♯ ‘ 𝑊 ) − 1 ) + 1 ) ) |
| 19 | 18 | adantr | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ) → ( ♯ ‘ 𝑊 ) = ( ( ( ♯ ‘ 𝑊 ) − 1 ) + 1 ) ) |
| 20 | 19 | opeq2d | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ) → 〈 ( ( ♯ ‘ 𝑊 ) − 1 ) , ( ♯ ‘ 𝑊 ) 〉 = 〈 ( ( ♯ ‘ 𝑊 ) − 1 ) , ( ( ( ♯ ‘ 𝑊 ) − 1 ) + 1 ) 〉 ) |
| 21 | 20 | oveq2d | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ) → ( 𝑊 substr 〈 ( ( ♯ ‘ 𝑊 ) − 1 ) , ( ♯ ‘ 𝑊 ) 〉 ) = ( 𝑊 substr 〈 ( ( ♯ ‘ 𝑊 ) − 1 ) , ( ( ( ♯ ‘ 𝑊 ) − 1 ) + 1 ) 〉 ) ) |
| 22 | lsw | ⊢ ( 𝑊 ∈ Word 𝑉 → ( lastS ‘ 𝑊 ) = ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) | |
| 23 | 22 | adantr | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ) → ( lastS ‘ 𝑊 ) = ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) |
| 24 | 23 | s1eqd | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ) → 〈“ ( lastS ‘ 𝑊 ) ”〉 = 〈“ ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ”〉 ) |
| 25 | 12 21 24 | 3eqtr4d | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ) → ( 𝑊 substr 〈 ( ( ♯ ‘ 𝑊 ) − 1 ) , ( ♯ ‘ 𝑊 ) 〉 ) = 〈“ ( lastS ‘ 𝑊 ) ”〉 ) |