This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extract a single symbol from a word. (Contributed by Stefan O'Rear, 23-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | swrds1 | |- ( ( W e. Word A /\ I e. ( 0 ..^ ( # ` W ) ) ) -> ( W substr <. I , ( I + 1 ) >. ) = <" ( W ` I ) "> ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | swrdcl | |- ( W e. Word A -> ( W substr <. I , ( I + 1 ) >. ) e. Word A ) |
|
| 2 | simpl | |- ( ( W e. Word A /\ I e. ( 0 ..^ ( # ` W ) ) ) -> W e. Word A ) |
|
| 3 | elfzouz | |- ( I e. ( 0 ..^ ( # ` W ) ) -> I e. ( ZZ>= ` 0 ) ) |
|
| 4 | 3 | adantl | |- ( ( W e. Word A /\ I e. ( 0 ..^ ( # ` W ) ) ) -> I e. ( ZZ>= ` 0 ) ) |
| 5 | elfzoelz | |- ( I e. ( 0 ..^ ( # ` W ) ) -> I e. ZZ ) |
|
| 6 | 5 | adantl | |- ( ( W e. Word A /\ I e. ( 0 ..^ ( # ` W ) ) ) -> I e. ZZ ) |
| 7 | uzid | |- ( I e. ZZ -> I e. ( ZZ>= ` I ) ) |
|
| 8 | peano2uz | |- ( I e. ( ZZ>= ` I ) -> ( I + 1 ) e. ( ZZ>= ` I ) ) |
|
| 9 | 6 7 8 | 3syl | |- ( ( W e. Word A /\ I e. ( 0 ..^ ( # ` W ) ) ) -> ( I + 1 ) e. ( ZZ>= ` I ) ) |
| 10 | elfzuzb | |- ( I e. ( 0 ... ( I + 1 ) ) <-> ( I e. ( ZZ>= ` 0 ) /\ ( I + 1 ) e. ( ZZ>= ` I ) ) ) |
|
| 11 | 4 9 10 | sylanbrc | |- ( ( W e. Word A /\ I e. ( 0 ..^ ( # ` W ) ) ) -> I e. ( 0 ... ( I + 1 ) ) ) |
| 12 | fzofzp1 | |- ( I e. ( 0 ..^ ( # ` W ) ) -> ( I + 1 ) e. ( 0 ... ( # ` W ) ) ) |
|
| 13 | 12 | adantl | |- ( ( W e. Word A /\ I e. ( 0 ..^ ( # ` W ) ) ) -> ( I + 1 ) e. ( 0 ... ( # ` W ) ) ) |
| 14 | swrdlen | |- ( ( W e. Word A /\ I e. ( 0 ... ( I + 1 ) ) /\ ( I + 1 ) e. ( 0 ... ( # ` W ) ) ) -> ( # ` ( W substr <. I , ( I + 1 ) >. ) ) = ( ( I + 1 ) - I ) ) |
|
| 15 | 2 11 13 14 | syl3anc | |- ( ( W e. Word A /\ I e. ( 0 ..^ ( # ` W ) ) ) -> ( # ` ( W substr <. I , ( I + 1 ) >. ) ) = ( ( I + 1 ) - I ) ) |
| 16 | 6 | zcnd | |- ( ( W e. Word A /\ I e. ( 0 ..^ ( # ` W ) ) ) -> I e. CC ) |
| 17 | ax-1cn | |- 1 e. CC |
|
| 18 | pncan2 | |- ( ( I e. CC /\ 1 e. CC ) -> ( ( I + 1 ) - I ) = 1 ) |
|
| 19 | 16 17 18 | sylancl | |- ( ( W e. Word A /\ I e. ( 0 ..^ ( # ` W ) ) ) -> ( ( I + 1 ) - I ) = 1 ) |
| 20 | 15 19 | eqtrd | |- ( ( W e. Word A /\ I e. ( 0 ..^ ( # ` W ) ) ) -> ( # ` ( W substr <. I , ( I + 1 ) >. ) ) = 1 ) |
| 21 | eqs1 | |- ( ( ( W substr <. I , ( I + 1 ) >. ) e. Word A /\ ( # ` ( W substr <. I , ( I + 1 ) >. ) ) = 1 ) -> ( W substr <. I , ( I + 1 ) >. ) = <" ( ( W substr <. I , ( I + 1 ) >. ) ` 0 ) "> ) |
|
| 22 | 1 20 21 | syl2an2r | |- ( ( W e. Word A /\ I e. ( 0 ..^ ( # ` W ) ) ) -> ( W substr <. I , ( I + 1 ) >. ) = <" ( ( W substr <. I , ( I + 1 ) >. ) ` 0 ) "> ) |
| 23 | 0z | |- 0 e. ZZ |
|
| 24 | snidg | |- ( 0 e. ZZ -> 0 e. { 0 } ) |
|
| 25 | 23 24 | ax-mp | |- 0 e. { 0 } |
| 26 | 19 | oveq2d | |- ( ( W e. Word A /\ I e. ( 0 ..^ ( # ` W ) ) ) -> ( 0 ..^ ( ( I + 1 ) - I ) ) = ( 0 ..^ 1 ) ) |
| 27 | fzo01 | |- ( 0 ..^ 1 ) = { 0 } |
|
| 28 | 26 27 | eqtrdi | |- ( ( W e. Word A /\ I e. ( 0 ..^ ( # ` W ) ) ) -> ( 0 ..^ ( ( I + 1 ) - I ) ) = { 0 } ) |
| 29 | 25 28 | eleqtrrid | |- ( ( W e. Word A /\ I e. ( 0 ..^ ( # ` W ) ) ) -> 0 e. ( 0 ..^ ( ( I + 1 ) - I ) ) ) |
| 30 | swrdfv | |- ( ( ( W e. Word A /\ I e. ( 0 ... ( I + 1 ) ) /\ ( I + 1 ) e. ( 0 ... ( # ` W ) ) ) /\ 0 e. ( 0 ..^ ( ( I + 1 ) - I ) ) ) -> ( ( W substr <. I , ( I + 1 ) >. ) ` 0 ) = ( W ` ( 0 + I ) ) ) |
|
| 31 | 2 11 13 29 30 | syl31anc | |- ( ( W e. Word A /\ I e. ( 0 ..^ ( # ` W ) ) ) -> ( ( W substr <. I , ( I + 1 ) >. ) ` 0 ) = ( W ` ( 0 + I ) ) ) |
| 32 | addlid | |- ( I e. CC -> ( 0 + I ) = I ) |
|
| 33 | 32 | eqcomd | |- ( I e. CC -> I = ( 0 + I ) ) |
| 34 | 16 33 | syl | |- ( ( W e. Word A /\ I e. ( 0 ..^ ( # ` W ) ) ) -> I = ( 0 + I ) ) |
| 35 | 34 | fveq2d | |- ( ( W e. Word A /\ I e. ( 0 ..^ ( # ` W ) ) ) -> ( W ` I ) = ( W ` ( 0 + I ) ) ) |
| 36 | 31 35 | eqtr4d | |- ( ( W e. Word A /\ I e. ( 0 ..^ ( # ` W ) ) ) -> ( ( W substr <. I , ( I + 1 ) >. ) ` 0 ) = ( W ` I ) ) |
| 37 | 36 | s1eqd | |- ( ( W e. Word A /\ I e. ( 0 ..^ ( # ` W ) ) ) -> <" ( ( W substr <. I , ( I + 1 ) >. ) ` 0 ) "> = <" ( W ` I ) "> ) |
| 38 | 22 37 | eqtrd | |- ( ( W e. Word A /\ I e. ( 0 ..^ ( # ` W ) ) ) -> ( W substr <. I , ( I + 1 ) >. ) = <" ( W ` I ) "> ) |