This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Recover the right half of a concatenated word. (Contributed by Mario Carneiro, 27-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | swrdccat2 | |- ( ( S e. Word B /\ T e. Word B ) -> ( ( S ++ T ) substr <. ( # ` S ) , ( ( # ` S ) + ( # ` T ) ) >. ) = T ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ccatcl | |- ( ( S e. Word B /\ T e. Word B ) -> ( S ++ T ) e. Word B ) |
|
| 2 | swrdcl | |- ( ( S ++ T ) e. Word B -> ( ( S ++ T ) substr <. ( # ` S ) , ( ( # ` S ) + ( # ` T ) ) >. ) e. Word B ) |
|
| 3 | wrdfn | |- ( ( ( S ++ T ) substr <. ( # ` S ) , ( ( # ` S ) + ( # ` T ) ) >. ) e. Word B -> ( ( S ++ T ) substr <. ( # ` S ) , ( ( # ` S ) + ( # ` T ) ) >. ) Fn ( 0 ..^ ( # ` ( ( S ++ T ) substr <. ( # ` S ) , ( ( # ` S ) + ( # ` T ) ) >. ) ) ) ) |
|
| 4 | 1 2 3 | 3syl | |- ( ( S e. Word B /\ T e. Word B ) -> ( ( S ++ T ) substr <. ( # ` S ) , ( ( # ` S ) + ( # ` T ) ) >. ) Fn ( 0 ..^ ( # ` ( ( S ++ T ) substr <. ( # ` S ) , ( ( # ` S ) + ( # ` T ) ) >. ) ) ) ) |
| 5 | lencl | |- ( S e. Word B -> ( # ` S ) e. NN0 ) |
|
| 6 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 7 | 5 6 | eleqtrdi | |- ( S e. Word B -> ( # ` S ) e. ( ZZ>= ` 0 ) ) |
| 8 | 7 | adantr | |- ( ( S e. Word B /\ T e. Word B ) -> ( # ` S ) e. ( ZZ>= ` 0 ) ) |
| 9 | 5 | nn0zd | |- ( S e. Word B -> ( # ` S ) e. ZZ ) |
| 10 | 9 | uzidd | |- ( S e. Word B -> ( # ` S ) e. ( ZZ>= ` ( # ` S ) ) ) |
| 11 | lencl | |- ( T e. Word B -> ( # ` T ) e. NN0 ) |
|
| 12 | uzaddcl | |- ( ( ( # ` S ) e. ( ZZ>= ` ( # ` S ) ) /\ ( # ` T ) e. NN0 ) -> ( ( # ` S ) + ( # ` T ) ) e. ( ZZ>= ` ( # ` S ) ) ) |
|
| 13 | 10 11 12 | syl2an | |- ( ( S e. Word B /\ T e. Word B ) -> ( ( # ` S ) + ( # ` T ) ) e. ( ZZ>= ` ( # ` S ) ) ) |
| 14 | elfzuzb | |- ( ( # ` S ) e. ( 0 ... ( ( # ` S ) + ( # ` T ) ) ) <-> ( ( # ` S ) e. ( ZZ>= ` 0 ) /\ ( ( # ` S ) + ( # ` T ) ) e. ( ZZ>= ` ( # ` S ) ) ) ) |
|
| 15 | 8 13 14 | sylanbrc | |- ( ( S e. Word B /\ T e. Word B ) -> ( # ` S ) e. ( 0 ... ( ( # ` S ) + ( # ` T ) ) ) ) |
| 16 | nn0addcl | |- ( ( ( # ` S ) e. NN0 /\ ( # ` T ) e. NN0 ) -> ( ( # ` S ) + ( # ` T ) ) e. NN0 ) |
|
| 17 | 5 11 16 | syl2an | |- ( ( S e. Word B /\ T e. Word B ) -> ( ( # ` S ) + ( # ` T ) ) e. NN0 ) |
| 18 | 17 6 | eleqtrdi | |- ( ( S e. Word B /\ T e. Word B ) -> ( ( # ` S ) + ( # ` T ) ) e. ( ZZ>= ` 0 ) ) |
| 19 | 17 | nn0zd | |- ( ( S e. Word B /\ T e. Word B ) -> ( ( # ` S ) + ( # ` T ) ) e. ZZ ) |
| 20 | 19 | uzidd | |- ( ( S e. Word B /\ T e. Word B ) -> ( ( # ` S ) + ( # ` T ) ) e. ( ZZ>= ` ( ( # ` S ) + ( # ` T ) ) ) ) |
| 21 | elfzuzb | |- ( ( ( # ` S ) + ( # ` T ) ) e. ( 0 ... ( ( # ` S ) + ( # ` T ) ) ) <-> ( ( ( # ` S ) + ( # ` T ) ) e. ( ZZ>= ` 0 ) /\ ( ( # ` S ) + ( # ` T ) ) e. ( ZZ>= ` ( ( # ` S ) + ( # ` T ) ) ) ) ) |
|
| 22 | 18 20 21 | sylanbrc | |- ( ( S e. Word B /\ T e. Word B ) -> ( ( # ` S ) + ( # ` T ) ) e. ( 0 ... ( ( # ` S ) + ( # ` T ) ) ) ) |
| 23 | ccatlen | |- ( ( S e. Word B /\ T e. Word B ) -> ( # ` ( S ++ T ) ) = ( ( # ` S ) + ( # ` T ) ) ) |
|
| 24 | 23 | oveq2d | |- ( ( S e. Word B /\ T e. Word B ) -> ( 0 ... ( # ` ( S ++ T ) ) ) = ( 0 ... ( ( # ` S ) + ( # ` T ) ) ) ) |
| 25 | 22 24 | eleqtrrd | |- ( ( S e. Word B /\ T e. Word B ) -> ( ( # ` S ) + ( # ` T ) ) e. ( 0 ... ( # ` ( S ++ T ) ) ) ) |
| 26 | swrdlen | |- ( ( ( S ++ T ) e. Word B /\ ( # ` S ) e. ( 0 ... ( ( # ` S ) + ( # ` T ) ) ) /\ ( ( # ` S ) + ( # ` T ) ) e. ( 0 ... ( # ` ( S ++ T ) ) ) ) -> ( # ` ( ( S ++ T ) substr <. ( # ` S ) , ( ( # ` S ) + ( # ` T ) ) >. ) ) = ( ( ( # ` S ) + ( # ` T ) ) - ( # ` S ) ) ) |
|
| 27 | 1 15 25 26 | syl3anc | |- ( ( S e. Word B /\ T e. Word B ) -> ( # ` ( ( S ++ T ) substr <. ( # ` S ) , ( ( # ` S ) + ( # ` T ) ) >. ) ) = ( ( ( # ` S ) + ( # ` T ) ) - ( # ` S ) ) ) |
| 28 | 5 | nn0cnd | |- ( S e. Word B -> ( # ` S ) e. CC ) |
| 29 | 11 | nn0cnd | |- ( T e. Word B -> ( # ` T ) e. CC ) |
| 30 | pncan2 | |- ( ( ( # ` S ) e. CC /\ ( # ` T ) e. CC ) -> ( ( ( # ` S ) + ( # ` T ) ) - ( # ` S ) ) = ( # ` T ) ) |
|
| 31 | 28 29 30 | syl2an | |- ( ( S e. Word B /\ T e. Word B ) -> ( ( ( # ` S ) + ( # ` T ) ) - ( # ` S ) ) = ( # ` T ) ) |
| 32 | 27 31 | eqtrd | |- ( ( S e. Word B /\ T e. Word B ) -> ( # ` ( ( S ++ T ) substr <. ( # ` S ) , ( ( # ` S ) + ( # ` T ) ) >. ) ) = ( # ` T ) ) |
| 33 | 32 | oveq2d | |- ( ( S e. Word B /\ T e. Word B ) -> ( 0 ..^ ( # ` ( ( S ++ T ) substr <. ( # ` S ) , ( ( # ` S ) + ( # ` T ) ) >. ) ) ) = ( 0 ..^ ( # ` T ) ) ) |
| 34 | 33 | fneq2d | |- ( ( S e. Word B /\ T e. Word B ) -> ( ( ( S ++ T ) substr <. ( # ` S ) , ( ( # ` S ) + ( # ` T ) ) >. ) Fn ( 0 ..^ ( # ` ( ( S ++ T ) substr <. ( # ` S ) , ( ( # ` S ) + ( # ` T ) ) >. ) ) ) <-> ( ( S ++ T ) substr <. ( # ` S ) , ( ( # ` S ) + ( # ` T ) ) >. ) Fn ( 0 ..^ ( # ` T ) ) ) ) |
| 35 | 4 34 | mpbid | |- ( ( S e. Word B /\ T e. Word B ) -> ( ( S ++ T ) substr <. ( # ` S ) , ( ( # ` S ) + ( # ` T ) ) >. ) Fn ( 0 ..^ ( # ` T ) ) ) |
| 36 | wrdfn | |- ( T e. Word B -> T Fn ( 0 ..^ ( # ` T ) ) ) |
|
| 37 | 36 | adantl | |- ( ( S e. Word B /\ T e. Word B ) -> T Fn ( 0 ..^ ( # ` T ) ) ) |
| 38 | 1 15 25 | 3jca | |- ( ( S e. Word B /\ T e. Word B ) -> ( ( S ++ T ) e. Word B /\ ( # ` S ) e. ( 0 ... ( ( # ` S ) + ( # ` T ) ) ) /\ ( ( # ` S ) + ( # ` T ) ) e. ( 0 ... ( # ` ( S ++ T ) ) ) ) ) |
| 39 | 31 | oveq2d | |- ( ( S e. Word B /\ T e. Word B ) -> ( 0 ..^ ( ( ( # ` S ) + ( # ` T ) ) - ( # ` S ) ) ) = ( 0 ..^ ( # ` T ) ) ) |
| 40 | 39 | eleq2d | |- ( ( S e. Word B /\ T e. Word B ) -> ( k e. ( 0 ..^ ( ( ( # ` S ) + ( # ` T ) ) - ( # ` S ) ) ) <-> k e. ( 0 ..^ ( # ` T ) ) ) ) |
| 41 | 40 | biimpar | |- ( ( ( S e. Word B /\ T e. Word B ) /\ k e. ( 0 ..^ ( # ` T ) ) ) -> k e. ( 0 ..^ ( ( ( # ` S ) + ( # ` T ) ) - ( # ` S ) ) ) ) |
| 42 | swrdfv | |- ( ( ( ( S ++ T ) e. Word B /\ ( # ` S ) e. ( 0 ... ( ( # ` S ) + ( # ` T ) ) ) /\ ( ( # ` S ) + ( # ` T ) ) e. ( 0 ... ( # ` ( S ++ T ) ) ) ) /\ k e. ( 0 ..^ ( ( ( # ` S ) + ( # ` T ) ) - ( # ` S ) ) ) ) -> ( ( ( S ++ T ) substr <. ( # ` S ) , ( ( # ` S ) + ( # ` T ) ) >. ) ` k ) = ( ( S ++ T ) ` ( k + ( # ` S ) ) ) ) |
|
| 43 | 38 41 42 | syl2an2r | |- ( ( ( S e. Word B /\ T e. Word B ) /\ k e. ( 0 ..^ ( # ` T ) ) ) -> ( ( ( S ++ T ) substr <. ( # ` S ) , ( ( # ` S ) + ( # ` T ) ) >. ) ` k ) = ( ( S ++ T ) ` ( k + ( # ` S ) ) ) ) |
| 44 | ccatval3 | |- ( ( S e. Word B /\ T e. Word B /\ k e. ( 0 ..^ ( # ` T ) ) ) -> ( ( S ++ T ) ` ( k + ( # ` S ) ) ) = ( T ` k ) ) |
|
| 45 | 44 | 3expa | |- ( ( ( S e. Word B /\ T e. Word B ) /\ k e. ( 0 ..^ ( # ` T ) ) ) -> ( ( S ++ T ) ` ( k + ( # ` S ) ) ) = ( T ` k ) ) |
| 46 | 43 45 | eqtrd | |- ( ( ( S e. Word B /\ T e. Word B ) /\ k e. ( 0 ..^ ( # ` T ) ) ) -> ( ( ( S ++ T ) substr <. ( # ` S ) , ( ( # ` S ) + ( # ` T ) ) >. ) ` k ) = ( T ` k ) ) |
| 47 | 35 37 46 | eqfnfvd | |- ( ( S e. Word B /\ T e. Word B ) -> ( ( S ++ T ) substr <. ( # ` S ) , ( ( # ` S ) + ( # ` T ) ) >. ) = T ) |