This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the incomparability relation is equivalent to equality in a subset, then the partial order strictly orders the subset. (Contributed by Mario Carneiro, 30-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | swoer.1 | ⊢ 𝑅 = ( ( 𝑋 × 𝑋 ) ∖ ( < ∪ ◡ < ) ) | |
| swoer.2 | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑦 < 𝑧 → ¬ 𝑧 < 𝑦 ) ) | ||
| swoer.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑥 < 𝑦 → ( 𝑥 < 𝑧 ∨ 𝑧 < 𝑦 ) ) ) | ||
| swoso.4 | ⊢ ( 𝜑 → 𝑌 ⊆ 𝑋 ) | ||
| swoso.5 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ∧ 𝑥 𝑅 𝑦 ) ) → 𝑥 = 𝑦 ) | ||
| Assertion | swoso | ⊢ ( 𝜑 → < Or 𝑌 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | swoer.1 | ⊢ 𝑅 = ( ( 𝑋 × 𝑋 ) ∖ ( < ∪ ◡ < ) ) | |
| 2 | swoer.2 | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑦 < 𝑧 → ¬ 𝑧 < 𝑦 ) ) | |
| 3 | swoer.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑥 < 𝑦 → ( 𝑥 < 𝑧 ∨ 𝑧 < 𝑦 ) ) ) | |
| 4 | swoso.4 | ⊢ ( 𝜑 → 𝑌 ⊆ 𝑋 ) | |
| 5 | swoso.5 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ∧ 𝑥 𝑅 𝑦 ) ) → 𝑥 = 𝑦 ) | |
| 6 | 2 3 | swopo | ⊢ ( 𝜑 → < Po 𝑋 ) |
| 7 | poss | ⊢ ( 𝑌 ⊆ 𝑋 → ( < Po 𝑋 → < Po 𝑌 ) ) | |
| 8 | 4 6 7 | sylc | ⊢ ( 𝜑 → < Po 𝑌 ) |
| 9 | 4 | sselda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → 𝑥 ∈ 𝑋 ) |
| 10 | 4 | sselda | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → 𝑦 ∈ 𝑋 ) |
| 11 | 9 10 | anim12dan | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ) ) → ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) |
| 12 | 1 | brdifun | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 𝑅 𝑦 ↔ ¬ ( 𝑥 < 𝑦 ∨ 𝑦 < 𝑥 ) ) ) |
| 13 | 11 12 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ) ) → ( 𝑥 𝑅 𝑦 ↔ ¬ ( 𝑥 < 𝑦 ∨ 𝑦 < 𝑥 ) ) ) |
| 14 | df-3an | ⊢ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ∧ 𝑥 𝑅 𝑦 ) ↔ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ) ∧ 𝑥 𝑅 𝑦 ) ) | |
| 15 | 14 5 | sylan2br | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ) ∧ 𝑥 𝑅 𝑦 ) ) → 𝑥 = 𝑦 ) |
| 16 | 15 | expr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ) ) → ( 𝑥 𝑅 𝑦 → 𝑥 = 𝑦 ) ) |
| 17 | 13 16 | sylbird | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ) ) → ( ¬ ( 𝑥 < 𝑦 ∨ 𝑦 < 𝑥 ) → 𝑥 = 𝑦 ) ) |
| 18 | 17 | orrd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ) ) → ( ( 𝑥 < 𝑦 ∨ 𝑦 < 𝑥 ) ∨ 𝑥 = 𝑦 ) ) |
| 19 | 3orcomb | ⊢ ( ( 𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥 ) ↔ ( 𝑥 < 𝑦 ∨ 𝑦 < 𝑥 ∨ 𝑥 = 𝑦 ) ) | |
| 20 | df-3or | ⊢ ( ( 𝑥 < 𝑦 ∨ 𝑦 < 𝑥 ∨ 𝑥 = 𝑦 ) ↔ ( ( 𝑥 < 𝑦 ∨ 𝑦 < 𝑥 ) ∨ 𝑥 = 𝑦 ) ) | |
| 21 | 19 20 | bitri | ⊢ ( ( 𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥 ) ↔ ( ( 𝑥 < 𝑦 ∨ 𝑦 < 𝑥 ) ∨ 𝑥 = 𝑦 ) ) |
| 22 | 18 21 | sylibr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ) ) → ( 𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥 ) ) |
| 23 | 8 22 | issod | ⊢ ( 𝜑 → < Or 𝑌 ) |