This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem 3orcomb

Description: Commutation law for triple disjunction. (Contributed by Scott Fenton, 20-Apr-2011) (Proof shortened by Wolf Lammen, 8-Apr-2022)

Ref Expression
Assertion 3orcomb ( ( 𝜑𝜓𝜒 ) ↔ ( 𝜑𝜒𝜓 ) )

Proof

Step Hyp Ref Expression
1 3orcoma ( ( 𝜑𝜓𝜒 ) ↔ ( 𝜓𝜑𝜒 ) )
2 3orrot ( ( 𝜓𝜑𝜒 ) ↔ ( 𝜑𝜒𝜓 ) )
3 1 2 bitri ( ( 𝜑𝜓𝜒 ) ↔ ( 𝜑𝜒𝜓 ) )