This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Commutation law for triple disjunction. (Contributed by Scott Fenton, 20-Apr-2011) (Proof shortened by Wolf Lammen, 8-Apr-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 3orcomb | ⊢ ( ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ↔ ( 𝜑 ∨ 𝜒 ∨ 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3orcoma | ⊢ ( ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ↔ ( 𝜓 ∨ 𝜑 ∨ 𝜒 ) ) | |
| 2 | 3orrot | ⊢ ( ( 𝜓 ∨ 𝜑 ∨ 𝜒 ) ↔ ( 𝜑 ∨ 𝜒 ∨ 𝜓 ) ) | |
| 3 | 1 2 | bitri | ⊢ ( ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ↔ ( 𝜑 ∨ 𝜒 ∨ 𝜓 ) ) |