This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the incomparability relation is equivalent to equality in a subset, then the partial order strictly orders the subset. (Contributed by Mario Carneiro, 30-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | swoer.1 | |- R = ( ( X X. X ) \ ( .< u. `' .< ) ) |
|
| swoer.2 | |- ( ( ph /\ ( y e. X /\ z e. X ) ) -> ( y .< z -> -. z .< y ) ) |
||
| swoer.3 | |- ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> ( x .< y -> ( x .< z \/ z .< y ) ) ) |
||
| swoso.4 | |- ( ph -> Y C_ X ) |
||
| swoso.5 | |- ( ( ph /\ ( x e. Y /\ y e. Y /\ x R y ) ) -> x = y ) |
||
| Assertion | swoso | |- ( ph -> .< Or Y ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | swoer.1 | |- R = ( ( X X. X ) \ ( .< u. `' .< ) ) |
|
| 2 | swoer.2 | |- ( ( ph /\ ( y e. X /\ z e. X ) ) -> ( y .< z -> -. z .< y ) ) |
|
| 3 | swoer.3 | |- ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> ( x .< y -> ( x .< z \/ z .< y ) ) ) |
|
| 4 | swoso.4 | |- ( ph -> Y C_ X ) |
|
| 5 | swoso.5 | |- ( ( ph /\ ( x e. Y /\ y e. Y /\ x R y ) ) -> x = y ) |
|
| 6 | 2 3 | swopo | |- ( ph -> .< Po X ) |
| 7 | poss | |- ( Y C_ X -> ( .< Po X -> .< Po Y ) ) |
|
| 8 | 4 6 7 | sylc | |- ( ph -> .< Po Y ) |
| 9 | 4 | sselda | |- ( ( ph /\ x e. Y ) -> x e. X ) |
| 10 | 4 | sselda | |- ( ( ph /\ y e. Y ) -> y e. X ) |
| 11 | 9 10 | anim12dan | |- ( ( ph /\ ( x e. Y /\ y e. Y ) ) -> ( x e. X /\ y e. X ) ) |
| 12 | 1 | brdifun | |- ( ( x e. X /\ y e. X ) -> ( x R y <-> -. ( x .< y \/ y .< x ) ) ) |
| 13 | 11 12 | syl | |- ( ( ph /\ ( x e. Y /\ y e. Y ) ) -> ( x R y <-> -. ( x .< y \/ y .< x ) ) ) |
| 14 | df-3an | |- ( ( x e. Y /\ y e. Y /\ x R y ) <-> ( ( x e. Y /\ y e. Y ) /\ x R y ) ) |
|
| 15 | 14 5 | sylan2br | |- ( ( ph /\ ( ( x e. Y /\ y e. Y ) /\ x R y ) ) -> x = y ) |
| 16 | 15 | expr | |- ( ( ph /\ ( x e. Y /\ y e. Y ) ) -> ( x R y -> x = y ) ) |
| 17 | 13 16 | sylbird | |- ( ( ph /\ ( x e. Y /\ y e. Y ) ) -> ( -. ( x .< y \/ y .< x ) -> x = y ) ) |
| 18 | 17 | orrd | |- ( ( ph /\ ( x e. Y /\ y e. Y ) ) -> ( ( x .< y \/ y .< x ) \/ x = y ) ) |
| 19 | 3orcomb | |- ( ( x .< y \/ x = y \/ y .< x ) <-> ( x .< y \/ y .< x \/ x = y ) ) |
|
| 20 | df-3or | |- ( ( x .< y \/ y .< x \/ x = y ) <-> ( ( x .< y \/ y .< x ) \/ x = y ) ) |
|
| 21 | 19 20 | bitri | |- ( ( x .< y \/ x = y \/ y .< x ) <-> ( ( x .< y \/ y .< x ) \/ x = y ) ) |
| 22 | 18 21 | sylibr | |- ( ( ph /\ ( x e. Y /\ y e. Y ) ) -> ( x .< y \/ x = y \/ y .< x ) ) |
| 23 | 8 22 | issod | |- ( ph -> .< Or Y ) |