This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A strict weak order is a partial order. (Contributed by Mario Carneiro, 9-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | swopo.1 | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝑦 𝑅 𝑧 → ¬ 𝑧 𝑅 𝑦 ) ) | |
| swopo.2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝑥 𝑅 𝑦 → ( 𝑥 𝑅 𝑧 ∨ 𝑧 𝑅 𝑦 ) ) ) | ||
| Assertion | swopo | ⊢ ( 𝜑 → 𝑅 Po 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | swopo.1 | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝑦 𝑅 𝑧 → ¬ 𝑧 𝑅 𝑦 ) ) | |
| 2 | swopo.2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝑥 𝑅 𝑦 → ( 𝑥 𝑅 𝑧 ∨ 𝑧 𝑅 𝑦 ) ) ) | |
| 3 | id | ⊢ ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐴 ) | |
| 4 | 3 | ancli | ⊢ ( 𝑥 ∈ 𝐴 → ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ) |
| 5 | 1 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( 𝑦 𝑅 𝑧 → ¬ 𝑧 𝑅 𝑦 ) ) |
| 6 | breq1 | ⊢ ( 𝑦 = 𝑥 → ( 𝑦 𝑅 𝑧 ↔ 𝑥 𝑅 𝑧 ) ) | |
| 7 | breq2 | ⊢ ( 𝑦 = 𝑥 → ( 𝑧 𝑅 𝑦 ↔ 𝑧 𝑅 𝑥 ) ) | |
| 8 | 7 | notbid | ⊢ ( 𝑦 = 𝑥 → ( ¬ 𝑧 𝑅 𝑦 ↔ ¬ 𝑧 𝑅 𝑥 ) ) |
| 9 | 6 8 | imbi12d | ⊢ ( 𝑦 = 𝑥 → ( ( 𝑦 𝑅 𝑧 → ¬ 𝑧 𝑅 𝑦 ) ↔ ( 𝑥 𝑅 𝑧 → ¬ 𝑧 𝑅 𝑥 ) ) ) |
| 10 | breq2 | ⊢ ( 𝑧 = 𝑥 → ( 𝑥 𝑅 𝑧 ↔ 𝑥 𝑅 𝑥 ) ) | |
| 11 | breq1 | ⊢ ( 𝑧 = 𝑥 → ( 𝑧 𝑅 𝑥 ↔ 𝑥 𝑅 𝑥 ) ) | |
| 12 | 11 | notbid | ⊢ ( 𝑧 = 𝑥 → ( ¬ 𝑧 𝑅 𝑥 ↔ ¬ 𝑥 𝑅 𝑥 ) ) |
| 13 | 10 12 | imbi12d | ⊢ ( 𝑧 = 𝑥 → ( ( 𝑥 𝑅 𝑧 → ¬ 𝑧 𝑅 𝑥 ) ↔ ( 𝑥 𝑅 𝑥 → ¬ 𝑥 𝑅 𝑥 ) ) ) |
| 14 | 9 13 | rspc2va | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( 𝑦 𝑅 𝑧 → ¬ 𝑧 𝑅 𝑦 ) ) → ( 𝑥 𝑅 𝑥 → ¬ 𝑥 𝑅 𝑥 ) ) |
| 15 | 4 5 14 | syl2anr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 𝑅 𝑥 → ¬ 𝑥 𝑅 𝑥 ) ) |
| 16 | 15 | pm2.01d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ¬ 𝑥 𝑅 𝑥 ) |
| 17 | 1 | 3adantr1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝑦 𝑅 𝑧 → ¬ 𝑧 𝑅 𝑦 ) ) |
| 18 | 2 | imp | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) ∧ 𝑥 𝑅 𝑦 ) → ( 𝑥 𝑅 𝑧 ∨ 𝑧 𝑅 𝑦 ) ) |
| 19 | 18 | orcomd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) ∧ 𝑥 𝑅 𝑦 ) → ( 𝑧 𝑅 𝑦 ∨ 𝑥 𝑅 𝑧 ) ) |
| 20 | 19 | ord | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) ∧ 𝑥 𝑅 𝑦 ) → ( ¬ 𝑧 𝑅 𝑦 → 𝑥 𝑅 𝑧 ) ) |
| 21 | 20 | expimpd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( ( 𝑥 𝑅 𝑦 ∧ ¬ 𝑧 𝑅 𝑦 ) → 𝑥 𝑅 𝑧 ) ) |
| 22 | 17 21 | sylan2d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) |
| 23 | 16 22 | ispod | ⊢ ( 𝜑 → 𝑅 Po 𝐴 ) |