This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Evaluate the incomparability relation. (Contributed by Mario Carneiro, 9-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | swoer.1 | ⊢ 𝑅 = ( ( 𝑋 × 𝑋 ) ∖ ( < ∪ ◡ < ) ) | |
| Assertion | brdifun | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝑅 𝐵 ↔ ¬ ( 𝐴 < 𝐵 ∨ 𝐵 < 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | swoer.1 | ⊢ 𝑅 = ( ( 𝑋 × 𝑋 ) ∖ ( < ∪ ◡ < ) ) | |
| 2 | opelxpi | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 〈 𝐴 , 𝐵 〉 ∈ ( 𝑋 × 𝑋 ) ) | |
| 3 | df-br | ⊢ ( 𝐴 ( 𝑋 × 𝑋 ) 𝐵 ↔ 〈 𝐴 , 𝐵 〉 ∈ ( 𝑋 × 𝑋 ) ) | |
| 4 | 2 3 | sylibr | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 𝐴 ( 𝑋 × 𝑋 ) 𝐵 ) |
| 5 | 1 | breqi | ⊢ ( 𝐴 𝑅 𝐵 ↔ 𝐴 ( ( 𝑋 × 𝑋 ) ∖ ( < ∪ ◡ < ) ) 𝐵 ) |
| 6 | brdif | ⊢ ( 𝐴 ( ( 𝑋 × 𝑋 ) ∖ ( < ∪ ◡ < ) ) 𝐵 ↔ ( 𝐴 ( 𝑋 × 𝑋 ) 𝐵 ∧ ¬ 𝐴 ( < ∪ ◡ < ) 𝐵 ) ) | |
| 7 | 5 6 | bitri | ⊢ ( 𝐴 𝑅 𝐵 ↔ ( 𝐴 ( 𝑋 × 𝑋 ) 𝐵 ∧ ¬ 𝐴 ( < ∪ ◡ < ) 𝐵 ) ) |
| 8 | 7 | baib | ⊢ ( 𝐴 ( 𝑋 × 𝑋 ) 𝐵 → ( 𝐴 𝑅 𝐵 ↔ ¬ 𝐴 ( < ∪ ◡ < ) 𝐵 ) ) |
| 9 | 4 8 | syl | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝑅 𝐵 ↔ ¬ 𝐴 ( < ∪ ◡ < ) 𝐵 ) ) |
| 10 | brun | ⊢ ( 𝐴 ( < ∪ ◡ < ) 𝐵 ↔ ( 𝐴 < 𝐵 ∨ 𝐴 ◡ < 𝐵 ) ) | |
| 11 | brcnvg | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 ◡ < 𝐵 ↔ 𝐵 < 𝐴 ) ) | |
| 12 | 11 | orbi2d | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 < 𝐵 ∨ 𝐴 ◡ < 𝐵 ) ↔ ( 𝐴 < 𝐵 ∨ 𝐵 < 𝐴 ) ) ) |
| 13 | 10 12 | bitrid | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 ( < ∪ ◡ < ) 𝐵 ↔ ( 𝐴 < 𝐵 ∨ 𝐵 < 𝐴 ) ) ) |
| 14 | 13 | notbid | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ¬ 𝐴 ( < ∪ ◡ < ) 𝐵 ↔ ¬ ( 𝐴 < 𝐵 ∨ 𝐵 < 𝐴 ) ) ) |
| 15 | 9 14 | bitrd | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝑅 𝐵 ↔ ¬ ( 𝐴 < 𝐵 ∨ 𝐵 < 𝐴 ) ) ) |