This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the incomparability relation is equivalent to equality in a subset, then the partial order strictly orders the subset. (Contributed by Mario Carneiro, 30-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | swoer.1 | ||
| swoer.2 | |||
| swoer.3 | |||
| swoso.4 | |||
| swoso.5 | |||
| Assertion | swoso |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | swoer.1 | ||
| 2 | swoer.2 | ||
| 3 | swoer.3 | ||
| 4 | swoso.4 | ||
| 5 | swoso.5 | ||
| 6 | 2 3 | swopo | |
| 7 | poss | ||
| 8 | 4 6 7 | sylc | |
| 9 | 4 | sselda | |
| 10 | 4 | sselda | |
| 11 | 9 10 | anim12dan | |
| 12 | 1 | brdifun | |
| 13 | 11 12 | syl | |
| 14 | df-3an | ||
| 15 | 14 5 | sylan2br | |
| 16 | 15 | expr | |
| 17 | 13 16 | sylbird | |
| 18 | 17 | orrd | |
| 19 | 3orcomb | ||
| 20 | df-3or | ||
| 21 | 19 20 | bitri | |
| 22 | 18 21 | sylibr | |
| 23 | 8 22 | issod |