This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for eqer . (Contributed by NM, 17-Mar-2008) (Proof shortened by Mario Carneiro, 6-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eqer.1 | ⊢ ( 𝑥 = 𝑦 → 𝐴 = 𝐵 ) | |
| eqer.2 | ⊢ 𝑅 = { 〈 𝑥 , 𝑦 〉 ∣ 𝐴 = 𝐵 } | ||
| Assertion | eqerlem | ⊢ ( 𝑧 𝑅 𝑤 ↔ ⦋ 𝑧 / 𝑥 ⦌ 𝐴 = ⦋ 𝑤 / 𝑥 ⦌ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqer.1 | ⊢ ( 𝑥 = 𝑦 → 𝐴 = 𝐵 ) | |
| 2 | eqer.2 | ⊢ 𝑅 = { 〈 𝑥 , 𝑦 〉 ∣ 𝐴 = 𝐵 } | |
| 3 | 2 | brabsb | ⊢ ( 𝑧 𝑅 𝑤 ↔ [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝐴 = 𝐵 ) |
| 4 | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑧 / 𝑥 ⦌ 𝐴 | |
| 5 | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑤 / 𝑥 ⦌ 𝐴 | |
| 6 | 4 5 | nfeq | ⊢ Ⅎ 𝑥 ⦋ 𝑧 / 𝑥 ⦌ 𝐴 = ⦋ 𝑤 / 𝑥 ⦌ 𝐴 |
| 7 | nfv | ⊢ Ⅎ 𝑦 𝐴 = ⦋ 𝑤 / 𝑥 ⦌ 𝐴 | |
| 8 | vex | ⊢ 𝑦 ∈ V | |
| 9 | 8 1 | csbie | ⊢ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 = 𝐵 |
| 10 | csbeq1 | ⊢ ( 𝑦 = 𝑤 → ⦋ 𝑦 / 𝑥 ⦌ 𝐴 = ⦋ 𝑤 / 𝑥 ⦌ 𝐴 ) | |
| 11 | 9 10 | eqtr3id | ⊢ ( 𝑦 = 𝑤 → 𝐵 = ⦋ 𝑤 / 𝑥 ⦌ 𝐴 ) |
| 12 | 11 | eqeq2d | ⊢ ( 𝑦 = 𝑤 → ( 𝐴 = 𝐵 ↔ 𝐴 = ⦋ 𝑤 / 𝑥 ⦌ 𝐴 ) ) |
| 13 | 7 12 | sbciegf | ⊢ ( 𝑤 ∈ V → ( [ 𝑤 / 𝑦 ] 𝐴 = 𝐵 ↔ 𝐴 = ⦋ 𝑤 / 𝑥 ⦌ 𝐴 ) ) |
| 14 | 13 | elv | ⊢ ( [ 𝑤 / 𝑦 ] 𝐴 = 𝐵 ↔ 𝐴 = ⦋ 𝑤 / 𝑥 ⦌ 𝐴 ) |
| 15 | csbeq1a | ⊢ ( 𝑥 = 𝑧 → 𝐴 = ⦋ 𝑧 / 𝑥 ⦌ 𝐴 ) | |
| 16 | 15 | eqeq1d | ⊢ ( 𝑥 = 𝑧 → ( 𝐴 = ⦋ 𝑤 / 𝑥 ⦌ 𝐴 ↔ ⦋ 𝑧 / 𝑥 ⦌ 𝐴 = ⦋ 𝑤 / 𝑥 ⦌ 𝐴 ) ) |
| 17 | 14 16 | bitrid | ⊢ ( 𝑥 = 𝑧 → ( [ 𝑤 / 𝑦 ] 𝐴 = 𝐵 ↔ ⦋ 𝑧 / 𝑥 ⦌ 𝐴 = ⦋ 𝑤 / 𝑥 ⦌ 𝐴 ) ) |
| 18 | 6 17 | sbciegf | ⊢ ( 𝑧 ∈ V → ( [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝐴 = 𝐵 ↔ ⦋ 𝑧 / 𝑥 ⦌ 𝐴 = ⦋ 𝑤 / 𝑥 ⦌ 𝐴 ) ) |
| 19 | 18 | elv | ⊢ ( [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝐴 = 𝐵 ↔ ⦋ 𝑧 / 𝑥 ⦌ 𝐴 = ⦋ 𝑤 / 𝑥 ⦌ 𝐴 ) |
| 20 | 3 19 | bitri | ⊢ ( 𝑧 𝑅 𝑤 ↔ ⦋ 𝑧 / 𝑥 ⦌ 𝐴 = ⦋ 𝑤 / 𝑥 ⦌ 𝐴 ) |