This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The union of a nonempty, bounded set of positive reals is a positive real. Part of Proposition 9-3.3 of Gleason p. 122. (Contributed by NM, 19-May-1996) (Revised by Mario Carneiro, 12-Jun-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | suplem1pr | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ P ∀ 𝑦 ∈ 𝐴 𝑦 <P 𝑥 ) → ∪ 𝐴 ∈ P ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltrelpr | ⊢ <P ⊆ ( P × P ) | |
| 2 | 1 | brel | ⊢ ( 𝑦 <P 𝑥 → ( 𝑦 ∈ P ∧ 𝑥 ∈ P ) ) |
| 3 | 2 | simpld | ⊢ ( 𝑦 <P 𝑥 → 𝑦 ∈ P ) |
| 4 | 3 | ralimi | ⊢ ( ∀ 𝑦 ∈ 𝐴 𝑦 <P 𝑥 → ∀ 𝑦 ∈ 𝐴 𝑦 ∈ P ) |
| 5 | dfss3 | ⊢ ( 𝐴 ⊆ P ↔ ∀ 𝑦 ∈ 𝐴 𝑦 ∈ P ) | |
| 6 | 4 5 | sylibr | ⊢ ( ∀ 𝑦 ∈ 𝐴 𝑦 <P 𝑥 → 𝐴 ⊆ P ) |
| 7 | 6 | rexlimivw | ⊢ ( ∃ 𝑥 ∈ P ∀ 𝑦 ∈ 𝐴 𝑦 <P 𝑥 → 𝐴 ⊆ P ) |
| 8 | 7 | adantl | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ P ∀ 𝑦 ∈ 𝐴 𝑦 <P 𝑥 ) → 𝐴 ⊆ P ) |
| 9 | n0 | ⊢ ( 𝐴 ≠ ∅ ↔ ∃ 𝑧 𝑧 ∈ 𝐴 ) | |
| 10 | ssel | ⊢ ( 𝐴 ⊆ P → ( 𝑧 ∈ 𝐴 → 𝑧 ∈ P ) ) | |
| 11 | prn0 | ⊢ ( 𝑧 ∈ P → 𝑧 ≠ ∅ ) | |
| 12 | 0pss | ⊢ ( ∅ ⊊ 𝑧 ↔ 𝑧 ≠ ∅ ) | |
| 13 | 11 12 | sylibr | ⊢ ( 𝑧 ∈ P → ∅ ⊊ 𝑧 ) |
| 14 | elssuni | ⊢ ( 𝑧 ∈ 𝐴 → 𝑧 ⊆ ∪ 𝐴 ) | |
| 15 | psssstr | ⊢ ( ( ∅ ⊊ 𝑧 ∧ 𝑧 ⊆ ∪ 𝐴 ) → ∅ ⊊ ∪ 𝐴 ) | |
| 16 | 13 14 15 | syl2an | ⊢ ( ( 𝑧 ∈ P ∧ 𝑧 ∈ 𝐴 ) → ∅ ⊊ ∪ 𝐴 ) |
| 17 | 16 | expcom | ⊢ ( 𝑧 ∈ 𝐴 → ( 𝑧 ∈ P → ∅ ⊊ ∪ 𝐴 ) ) |
| 18 | 10 17 | sylcom | ⊢ ( 𝐴 ⊆ P → ( 𝑧 ∈ 𝐴 → ∅ ⊊ ∪ 𝐴 ) ) |
| 19 | 18 | exlimdv | ⊢ ( 𝐴 ⊆ P → ( ∃ 𝑧 𝑧 ∈ 𝐴 → ∅ ⊊ ∪ 𝐴 ) ) |
| 20 | 9 19 | biimtrid | ⊢ ( 𝐴 ⊆ P → ( 𝐴 ≠ ∅ → ∅ ⊊ ∪ 𝐴 ) ) |
| 21 | prpssnq | ⊢ ( 𝑥 ∈ P → 𝑥 ⊊ Q ) | |
| 22 | 21 | adantl | ⊢ ( ( 𝐴 ⊆ P ∧ 𝑥 ∈ P ) → 𝑥 ⊊ Q ) |
| 23 | ltprord | ⊢ ( ( 𝑦 ∈ P ∧ 𝑥 ∈ P ) → ( 𝑦 <P 𝑥 ↔ 𝑦 ⊊ 𝑥 ) ) | |
| 24 | pssss | ⊢ ( 𝑦 ⊊ 𝑥 → 𝑦 ⊆ 𝑥 ) | |
| 25 | 23 24 | biimtrdi | ⊢ ( ( 𝑦 ∈ P ∧ 𝑥 ∈ P ) → ( 𝑦 <P 𝑥 → 𝑦 ⊆ 𝑥 ) ) |
| 26 | 2 25 | mpcom | ⊢ ( 𝑦 <P 𝑥 → 𝑦 ⊆ 𝑥 ) |
| 27 | 26 | ralimi | ⊢ ( ∀ 𝑦 ∈ 𝐴 𝑦 <P 𝑥 → ∀ 𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥 ) |
| 28 | unissb | ⊢ ( ∪ 𝐴 ⊆ 𝑥 ↔ ∀ 𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥 ) | |
| 29 | 27 28 | sylibr | ⊢ ( ∀ 𝑦 ∈ 𝐴 𝑦 <P 𝑥 → ∪ 𝐴 ⊆ 𝑥 ) |
| 30 | sspsstr | ⊢ ( ( ∪ 𝐴 ⊆ 𝑥 ∧ 𝑥 ⊊ Q ) → ∪ 𝐴 ⊊ Q ) | |
| 31 | 30 | expcom | ⊢ ( 𝑥 ⊊ Q → ( ∪ 𝐴 ⊆ 𝑥 → ∪ 𝐴 ⊊ Q ) ) |
| 32 | 22 29 31 | syl2im | ⊢ ( ( 𝐴 ⊆ P ∧ 𝑥 ∈ P ) → ( ∀ 𝑦 ∈ 𝐴 𝑦 <P 𝑥 → ∪ 𝐴 ⊊ Q ) ) |
| 33 | 32 | rexlimdva | ⊢ ( 𝐴 ⊆ P → ( ∃ 𝑥 ∈ P ∀ 𝑦 ∈ 𝐴 𝑦 <P 𝑥 → ∪ 𝐴 ⊊ Q ) ) |
| 34 | 20 33 | anim12d | ⊢ ( 𝐴 ⊆ P → ( ( 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ P ∀ 𝑦 ∈ 𝐴 𝑦 <P 𝑥 ) → ( ∅ ⊊ ∪ 𝐴 ∧ ∪ 𝐴 ⊊ Q ) ) ) |
| 35 | 8 34 | mpcom | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ P ∀ 𝑦 ∈ 𝐴 𝑦 <P 𝑥 ) → ( ∅ ⊊ ∪ 𝐴 ∧ ∪ 𝐴 ⊊ Q ) ) |
| 36 | prcdnq | ⊢ ( ( 𝑧 ∈ P ∧ 𝑥 ∈ 𝑧 ) → ( 𝑦 <Q 𝑥 → 𝑦 ∈ 𝑧 ) ) | |
| 37 | 36 | ex | ⊢ ( 𝑧 ∈ P → ( 𝑥 ∈ 𝑧 → ( 𝑦 <Q 𝑥 → 𝑦 ∈ 𝑧 ) ) ) |
| 38 | 37 | com3r | ⊢ ( 𝑦 <Q 𝑥 → ( 𝑧 ∈ P → ( 𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧 ) ) ) |
| 39 | 10 38 | sylan9 | ⊢ ( ( 𝐴 ⊆ P ∧ 𝑦 <Q 𝑥 ) → ( 𝑧 ∈ 𝐴 → ( 𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧 ) ) ) |
| 40 | 39 | reximdvai | ⊢ ( ( 𝐴 ⊆ P ∧ 𝑦 <Q 𝑥 ) → ( ∃ 𝑧 ∈ 𝐴 𝑥 ∈ 𝑧 → ∃ 𝑧 ∈ 𝐴 𝑦 ∈ 𝑧 ) ) |
| 41 | eluni2 | ⊢ ( 𝑥 ∈ ∪ 𝐴 ↔ ∃ 𝑧 ∈ 𝐴 𝑥 ∈ 𝑧 ) | |
| 42 | eluni2 | ⊢ ( 𝑦 ∈ ∪ 𝐴 ↔ ∃ 𝑧 ∈ 𝐴 𝑦 ∈ 𝑧 ) | |
| 43 | 40 41 42 | 3imtr4g | ⊢ ( ( 𝐴 ⊆ P ∧ 𝑦 <Q 𝑥 ) → ( 𝑥 ∈ ∪ 𝐴 → 𝑦 ∈ ∪ 𝐴 ) ) |
| 44 | 43 | ex | ⊢ ( 𝐴 ⊆ P → ( 𝑦 <Q 𝑥 → ( 𝑥 ∈ ∪ 𝐴 → 𝑦 ∈ ∪ 𝐴 ) ) ) |
| 45 | 44 | com23 | ⊢ ( 𝐴 ⊆ P → ( 𝑥 ∈ ∪ 𝐴 → ( 𝑦 <Q 𝑥 → 𝑦 ∈ ∪ 𝐴 ) ) ) |
| 46 | 45 | alrimdv | ⊢ ( 𝐴 ⊆ P → ( 𝑥 ∈ ∪ 𝐴 → ∀ 𝑦 ( 𝑦 <Q 𝑥 → 𝑦 ∈ ∪ 𝐴 ) ) ) |
| 47 | eluni | ⊢ ( 𝑥 ∈ ∪ 𝐴 ↔ ∃ 𝑧 ( 𝑥 ∈ 𝑧 ∧ 𝑧 ∈ 𝐴 ) ) | |
| 48 | prnmax | ⊢ ( ( 𝑧 ∈ P ∧ 𝑥 ∈ 𝑧 ) → ∃ 𝑦 ∈ 𝑧 𝑥 <Q 𝑦 ) | |
| 49 | 48 | ex | ⊢ ( 𝑧 ∈ P → ( 𝑥 ∈ 𝑧 → ∃ 𝑦 ∈ 𝑧 𝑥 <Q 𝑦 ) ) |
| 50 | 10 49 | syl6 | ⊢ ( 𝐴 ⊆ P → ( 𝑧 ∈ 𝐴 → ( 𝑥 ∈ 𝑧 → ∃ 𝑦 ∈ 𝑧 𝑥 <Q 𝑦 ) ) ) |
| 51 | 50 | com23 | ⊢ ( 𝐴 ⊆ P → ( 𝑥 ∈ 𝑧 → ( 𝑧 ∈ 𝐴 → ∃ 𝑦 ∈ 𝑧 𝑥 <Q 𝑦 ) ) ) |
| 52 | 51 | imp | ⊢ ( ( 𝐴 ⊆ P ∧ 𝑥 ∈ 𝑧 ) → ( 𝑧 ∈ 𝐴 → ∃ 𝑦 ∈ 𝑧 𝑥 <Q 𝑦 ) ) |
| 53 | ssrexv | ⊢ ( 𝑧 ⊆ ∪ 𝐴 → ( ∃ 𝑦 ∈ 𝑧 𝑥 <Q 𝑦 → ∃ 𝑦 ∈ ∪ 𝐴 𝑥 <Q 𝑦 ) ) | |
| 54 | 14 53 | syl | ⊢ ( 𝑧 ∈ 𝐴 → ( ∃ 𝑦 ∈ 𝑧 𝑥 <Q 𝑦 → ∃ 𝑦 ∈ ∪ 𝐴 𝑥 <Q 𝑦 ) ) |
| 55 | 52 54 | sylcom | ⊢ ( ( 𝐴 ⊆ P ∧ 𝑥 ∈ 𝑧 ) → ( 𝑧 ∈ 𝐴 → ∃ 𝑦 ∈ ∪ 𝐴 𝑥 <Q 𝑦 ) ) |
| 56 | 55 | expimpd | ⊢ ( 𝐴 ⊆ P → ( ( 𝑥 ∈ 𝑧 ∧ 𝑧 ∈ 𝐴 ) → ∃ 𝑦 ∈ ∪ 𝐴 𝑥 <Q 𝑦 ) ) |
| 57 | 56 | exlimdv | ⊢ ( 𝐴 ⊆ P → ( ∃ 𝑧 ( 𝑥 ∈ 𝑧 ∧ 𝑧 ∈ 𝐴 ) → ∃ 𝑦 ∈ ∪ 𝐴 𝑥 <Q 𝑦 ) ) |
| 58 | 47 57 | biimtrid | ⊢ ( 𝐴 ⊆ P → ( 𝑥 ∈ ∪ 𝐴 → ∃ 𝑦 ∈ ∪ 𝐴 𝑥 <Q 𝑦 ) ) |
| 59 | 46 58 | jcad | ⊢ ( 𝐴 ⊆ P → ( 𝑥 ∈ ∪ 𝐴 → ( ∀ 𝑦 ( 𝑦 <Q 𝑥 → 𝑦 ∈ ∪ 𝐴 ) ∧ ∃ 𝑦 ∈ ∪ 𝐴 𝑥 <Q 𝑦 ) ) ) |
| 60 | 59 | ralrimiv | ⊢ ( 𝐴 ⊆ P → ∀ 𝑥 ∈ ∪ 𝐴 ( ∀ 𝑦 ( 𝑦 <Q 𝑥 → 𝑦 ∈ ∪ 𝐴 ) ∧ ∃ 𝑦 ∈ ∪ 𝐴 𝑥 <Q 𝑦 ) ) |
| 61 | 8 60 | syl | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ P ∀ 𝑦 ∈ 𝐴 𝑦 <P 𝑥 ) → ∀ 𝑥 ∈ ∪ 𝐴 ( ∀ 𝑦 ( 𝑦 <Q 𝑥 → 𝑦 ∈ ∪ 𝐴 ) ∧ ∃ 𝑦 ∈ ∪ 𝐴 𝑥 <Q 𝑦 ) ) |
| 62 | elnp | ⊢ ( ∪ 𝐴 ∈ P ↔ ( ( ∅ ⊊ ∪ 𝐴 ∧ ∪ 𝐴 ⊊ Q ) ∧ ∀ 𝑥 ∈ ∪ 𝐴 ( ∀ 𝑦 ( 𝑦 <Q 𝑥 → 𝑦 ∈ ∪ 𝐴 ) ∧ ∃ 𝑦 ∈ ∪ 𝐴 𝑥 <Q 𝑦 ) ) ) | |
| 63 | 35 61 62 | sylanbrc | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ P ∀ 𝑦 ∈ 𝐴 𝑦 <P 𝑥 ) → ∪ 𝐴 ∈ P ) |