This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The union of a set of positive reals (if a positive real) is its supremum (the least upper bound). Part of Proposition 9-3.3 of Gleason p. 122. (Contributed by NM, 19-May-1996) (Revised by Mario Carneiro, 12-Jun-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | suplem2pr | ⊢ ( 𝐴 ⊆ P → ( ( 𝑦 ∈ 𝐴 → ¬ ∪ 𝐴 <P 𝑦 ) ∧ ( 𝑦 <P ∪ 𝐴 → ∃ 𝑧 ∈ 𝐴 𝑦 <P 𝑧 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltrelpr | ⊢ <P ⊆ ( P × P ) | |
| 2 | 1 | brel | ⊢ ( 𝑦 <P ∪ 𝐴 → ( 𝑦 ∈ P ∧ ∪ 𝐴 ∈ P ) ) |
| 3 | 2 | simpld | ⊢ ( 𝑦 <P ∪ 𝐴 → 𝑦 ∈ P ) |
| 4 | ralnex | ⊢ ( ∀ 𝑧 ∈ 𝐴 ¬ 𝑦 <P 𝑧 ↔ ¬ ∃ 𝑧 ∈ 𝐴 𝑦 <P 𝑧 ) | |
| 5 | ssel2 | ⊢ ( ( 𝐴 ⊆ P ∧ 𝑧 ∈ 𝐴 ) → 𝑧 ∈ P ) | |
| 6 | ltsopr | ⊢ <P Or P | |
| 7 | sotric | ⊢ ( ( <P Or P ∧ ( 𝑦 ∈ P ∧ 𝑧 ∈ P ) ) → ( 𝑦 <P 𝑧 ↔ ¬ ( 𝑦 = 𝑧 ∨ 𝑧 <P 𝑦 ) ) ) | |
| 8 | 6 7 | mpan | ⊢ ( ( 𝑦 ∈ P ∧ 𝑧 ∈ P ) → ( 𝑦 <P 𝑧 ↔ ¬ ( 𝑦 = 𝑧 ∨ 𝑧 <P 𝑦 ) ) ) |
| 9 | 8 | con2bid | ⊢ ( ( 𝑦 ∈ P ∧ 𝑧 ∈ P ) → ( ( 𝑦 = 𝑧 ∨ 𝑧 <P 𝑦 ) ↔ ¬ 𝑦 <P 𝑧 ) ) |
| 10 | 9 | ancoms | ⊢ ( ( 𝑧 ∈ P ∧ 𝑦 ∈ P ) → ( ( 𝑦 = 𝑧 ∨ 𝑧 <P 𝑦 ) ↔ ¬ 𝑦 <P 𝑧 ) ) |
| 11 | ltprord | ⊢ ( ( 𝑧 ∈ P ∧ 𝑦 ∈ P ) → ( 𝑧 <P 𝑦 ↔ 𝑧 ⊊ 𝑦 ) ) | |
| 12 | 11 | orbi2d | ⊢ ( ( 𝑧 ∈ P ∧ 𝑦 ∈ P ) → ( ( 𝑦 = 𝑧 ∨ 𝑧 <P 𝑦 ) ↔ ( 𝑦 = 𝑧 ∨ 𝑧 ⊊ 𝑦 ) ) ) |
| 13 | sspss | ⊢ ( 𝑧 ⊆ 𝑦 ↔ ( 𝑧 ⊊ 𝑦 ∨ 𝑧 = 𝑦 ) ) | |
| 14 | equcom | ⊢ ( 𝑧 = 𝑦 ↔ 𝑦 = 𝑧 ) | |
| 15 | 14 | orbi2i | ⊢ ( ( 𝑧 ⊊ 𝑦 ∨ 𝑧 = 𝑦 ) ↔ ( 𝑧 ⊊ 𝑦 ∨ 𝑦 = 𝑧 ) ) |
| 16 | orcom | ⊢ ( ( 𝑧 ⊊ 𝑦 ∨ 𝑦 = 𝑧 ) ↔ ( 𝑦 = 𝑧 ∨ 𝑧 ⊊ 𝑦 ) ) | |
| 17 | 13 15 16 | 3bitri | ⊢ ( 𝑧 ⊆ 𝑦 ↔ ( 𝑦 = 𝑧 ∨ 𝑧 ⊊ 𝑦 ) ) |
| 18 | 12 17 | bitr4di | ⊢ ( ( 𝑧 ∈ P ∧ 𝑦 ∈ P ) → ( ( 𝑦 = 𝑧 ∨ 𝑧 <P 𝑦 ) ↔ 𝑧 ⊆ 𝑦 ) ) |
| 19 | 10 18 | bitr3d | ⊢ ( ( 𝑧 ∈ P ∧ 𝑦 ∈ P ) → ( ¬ 𝑦 <P 𝑧 ↔ 𝑧 ⊆ 𝑦 ) ) |
| 20 | 5 19 | sylan | ⊢ ( ( ( 𝐴 ⊆ P ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑦 ∈ P ) → ( ¬ 𝑦 <P 𝑧 ↔ 𝑧 ⊆ 𝑦 ) ) |
| 21 | 20 | an32s | ⊢ ( ( ( 𝐴 ⊆ P ∧ 𝑦 ∈ P ) ∧ 𝑧 ∈ 𝐴 ) → ( ¬ 𝑦 <P 𝑧 ↔ 𝑧 ⊆ 𝑦 ) ) |
| 22 | 21 | ralbidva | ⊢ ( ( 𝐴 ⊆ P ∧ 𝑦 ∈ P ) → ( ∀ 𝑧 ∈ 𝐴 ¬ 𝑦 <P 𝑧 ↔ ∀ 𝑧 ∈ 𝐴 𝑧 ⊆ 𝑦 ) ) |
| 23 | 4 22 | bitr3id | ⊢ ( ( 𝐴 ⊆ P ∧ 𝑦 ∈ P ) → ( ¬ ∃ 𝑧 ∈ 𝐴 𝑦 <P 𝑧 ↔ ∀ 𝑧 ∈ 𝐴 𝑧 ⊆ 𝑦 ) ) |
| 24 | unissb | ⊢ ( ∪ 𝐴 ⊆ 𝑦 ↔ ∀ 𝑧 ∈ 𝐴 𝑧 ⊆ 𝑦 ) | |
| 25 | 23 24 | bitr4di | ⊢ ( ( 𝐴 ⊆ P ∧ 𝑦 ∈ P ) → ( ¬ ∃ 𝑧 ∈ 𝐴 𝑦 <P 𝑧 ↔ ∪ 𝐴 ⊆ 𝑦 ) ) |
| 26 | ssnpss | ⊢ ( ∪ 𝐴 ⊆ 𝑦 → ¬ 𝑦 ⊊ ∪ 𝐴 ) | |
| 27 | ltprord | ⊢ ( ( 𝑦 ∈ P ∧ ∪ 𝐴 ∈ P ) → ( 𝑦 <P ∪ 𝐴 ↔ 𝑦 ⊊ ∪ 𝐴 ) ) | |
| 28 | 27 | biimpd | ⊢ ( ( 𝑦 ∈ P ∧ ∪ 𝐴 ∈ P ) → ( 𝑦 <P ∪ 𝐴 → 𝑦 ⊊ ∪ 𝐴 ) ) |
| 29 | 2 28 | mpcom | ⊢ ( 𝑦 <P ∪ 𝐴 → 𝑦 ⊊ ∪ 𝐴 ) |
| 30 | 26 29 | nsyl | ⊢ ( ∪ 𝐴 ⊆ 𝑦 → ¬ 𝑦 <P ∪ 𝐴 ) |
| 31 | 25 30 | biimtrdi | ⊢ ( ( 𝐴 ⊆ P ∧ 𝑦 ∈ P ) → ( ¬ ∃ 𝑧 ∈ 𝐴 𝑦 <P 𝑧 → ¬ 𝑦 <P ∪ 𝐴 ) ) |
| 32 | 31 | con4d | ⊢ ( ( 𝐴 ⊆ P ∧ 𝑦 ∈ P ) → ( 𝑦 <P ∪ 𝐴 → ∃ 𝑧 ∈ 𝐴 𝑦 <P 𝑧 ) ) |
| 33 | 32 | ex | ⊢ ( 𝐴 ⊆ P → ( 𝑦 ∈ P → ( 𝑦 <P ∪ 𝐴 → ∃ 𝑧 ∈ 𝐴 𝑦 <P 𝑧 ) ) ) |
| 34 | 3 33 | syl5 | ⊢ ( 𝐴 ⊆ P → ( 𝑦 <P ∪ 𝐴 → ( 𝑦 <P ∪ 𝐴 → ∃ 𝑧 ∈ 𝐴 𝑦 <P 𝑧 ) ) ) |
| 35 | 34 | pm2.43d | ⊢ ( 𝐴 ⊆ P → ( 𝑦 <P ∪ 𝐴 → ∃ 𝑧 ∈ 𝐴 𝑦 <P 𝑧 ) ) |
| 36 | elssuni | ⊢ ( 𝑦 ∈ 𝐴 → 𝑦 ⊆ ∪ 𝐴 ) | |
| 37 | ssnpss | ⊢ ( 𝑦 ⊆ ∪ 𝐴 → ¬ ∪ 𝐴 ⊊ 𝑦 ) | |
| 38 | 36 37 | syl | ⊢ ( 𝑦 ∈ 𝐴 → ¬ ∪ 𝐴 ⊊ 𝑦 ) |
| 39 | 1 | brel | ⊢ ( ∪ 𝐴 <P 𝑦 → ( ∪ 𝐴 ∈ P ∧ 𝑦 ∈ P ) ) |
| 40 | ltprord | ⊢ ( ( ∪ 𝐴 ∈ P ∧ 𝑦 ∈ P ) → ( ∪ 𝐴 <P 𝑦 ↔ ∪ 𝐴 ⊊ 𝑦 ) ) | |
| 41 | 40 | biimpd | ⊢ ( ( ∪ 𝐴 ∈ P ∧ 𝑦 ∈ P ) → ( ∪ 𝐴 <P 𝑦 → ∪ 𝐴 ⊊ 𝑦 ) ) |
| 42 | 39 41 | mpcom | ⊢ ( ∪ 𝐴 <P 𝑦 → ∪ 𝐴 ⊊ 𝑦 ) |
| 43 | 38 42 | nsyl | ⊢ ( 𝑦 ∈ 𝐴 → ¬ ∪ 𝐴 <P 𝑦 ) |
| 44 | 35 43 | jctil | ⊢ ( 𝐴 ⊆ P → ( ( 𝑦 ∈ 𝐴 → ¬ ∪ 𝐴 <P 𝑦 ) ∧ ( 𝑦 <P ∪ 𝐴 → ∃ 𝑧 ∈ 𝐴 𝑦 <P 𝑧 ) ) ) |